Anjana Kushwaha, Patrice Duroux, Véronique Giudicelli, Konstantin Todorov, Sofia Kossida
{"title":"IMGT/RobustpMHC:用于 I 类 MHC 肽结合预测的稳健训练。","authors":"Anjana Kushwaha, Patrice Duroux, Véronique Giudicelli, Konstantin Todorov, Sofia Kossida","doi":"10.1093/bib/bbae552","DOIUrl":null,"url":null,"abstract":"<p><p>The accurate prediction of peptide-major histocompatibility complex (MHC) class I binding probabilities is a critical endeavor in immunoinformatics, with broad implications for vaccine development and immunotherapies. While recent deep neural network based approaches have showcased promise in peptide-MHC (pMHC) prediction, they have two shortcomings: (i) they rely on hand-crafted pseudo-sequence extraction, (ii) they do not generalize well to different datasets, which limits the practicality of these approaches. While existing methods rely on a 34 amino acid pseudo-sequence, our findings uncover the involvement of 147 positions in direct interactions between MHC and peptide. We further show that neural architectures can learn the intricacies of pMHC binding using even full sequences. To this end, we present PerceiverpMHC that is able to learn accurate representations on full-sequences by leveraging efficient transformer based architectures. Additionally, we propose IMGT/RobustpMHC that harnesses the potential of unlabeled data in improving the robustness of pMHC binding predictions through a self-supervised learning strategy. We extensively evaluate RobustpMHC on eight different datasets and showcase an overall improvement of over 6% in binding prediction accuracy compared to state-of-the-art approaches. We compile CrystalIMGT, a crystallography-verified dataset presenting a challenge to existing approaches due to significantly different pMHC distributions. Finally, to mitigate this distribution gap, we further develop a transfer learning pipeline.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"25 6","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11540059/pdf/","citationCount":"0","resultStr":"{\"title\":\"IMGT/RobustpMHC: robust training for class-I MHC peptide binding prediction.\",\"authors\":\"Anjana Kushwaha, Patrice Duroux, Véronique Giudicelli, Konstantin Todorov, Sofia Kossida\",\"doi\":\"10.1093/bib/bbae552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The accurate prediction of peptide-major histocompatibility complex (MHC) class I binding probabilities is a critical endeavor in immunoinformatics, with broad implications for vaccine development and immunotherapies. While recent deep neural network based approaches have showcased promise in peptide-MHC (pMHC) prediction, they have two shortcomings: (i) they rely on hand-crafted pseudo-sequence extraction, (ii) they do not generalize well to different datasets, which limits the practicality of these approaches. While existing methods rely on a 34 amino acid pseudo-sequence, our findings uncover the involvement of 147 positions in direct interactions between MHC and peptide. We further show that neural architectures can learn the intricacies of pMHC binding using even full sequences. To this end, we present PerceiverpMHC that is able to learn accurate representations on full-sequences by leveraging efficient transformer based architectures. Additionally, we propose IMGT/RobustpMHC that harnesses the potential of unlabeled data in improving the robustness of pMHC binding predictions through a self-supervised learning strategy. We extensively evaluate RobustpMHC on eight different datasets and showcase an overall improvement of over 6% in binding prediction accuracy compared to state-of-the-art approaches. We compile CrystalIMGT, a crystallography-verified dataset presenting a challenge to existing approaches due to significantly different pMHC distributions. Finally, to mitigate this distribution gap, we further develop a transfer learning pipeline.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"25 6\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11540059/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbae552\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbae552","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
IMGT/RobustpMHC: robust training for class-I MHC peptide binding prediction.
The accurate prediction of peptide-major histocompatibility complex (MHC) class I binding probabilities is a critical endeavor in immunoinformatics, with broad implications for vaccine development and immunotherapies. While recent deep neural network based approaches have showcased promise in peptide-MHC (pMHC) prediction, they have two shortcomings: (i) they rely on hand-crafted pseudo-sequence extraction, (ii) they do not generalize well to different datasets, which limits the practicality of these approaches. While existing methods rely on a 34 amino acid pseudo-sequence, our findings uncover the involvement of 147 positions in direct interactions between MHC and peptide. We further show that neural architectures can learn the intricacies of pMHC binding using even full sequences. To this end, we present PerceiverpMHC that is able to learn accurate representations on full-sequences by leveraging efficient transformer based architectures. Additionally, we propose IMGT/RobustpMHC that harnesses the potential of unlabeled data in improving the robustness of pMHC binding predictions through a self-supervised learning strategy. We extensively evaluate RobustpMHC on eight different datasets and showcase an overall improvement of over 6% in binding prediction accuracy compared to state-of-the-art approaches. We compile CrystalIMGT, a crystallography-verified dataset presenting a challenge to existing approaches due to significantly different pMHC distributions. Finally, to mitigate this distribution gap, we further develop a transfer learning pipeline.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.