Joanna M Blodgett, Matthew N Ahmadi, Andrew J Atkin, Richard M Pulsford, Vegar Rangul, Sebastien Chastin, Hsiu-Wen Chan, Kristin Suorsa, Esmée A Bakker, Nidhi Gupta, Pasan Hettiarachchi, Peter J Johansson, Lauren B Sherar, Borja Del Pozo Cruz, Nicholas Koemel, Gita D Mishra, Thijs M H Eijsvogels, Sari Stenholm, Alun D Hughes, Armando Teixeira-Pinto, Ulf Ekelund, I-Min Lee, Andreas Holtermann, Annemarie Koster, Emmanuel Stamatakis, Mark Hamer
{"title":"设备测量的 24 小时运动行为和血压:ProPASS 联盟的 6 部分组成式个体参与者数据分析。","authors":"Joanna M Blodgett, Matthew N Ahmadi, Andrew J Atkin, Richard M Pulsford, Vegar Rangul, Sebastien Chastin, Hsiu-Wen Chan, Kristin Suorsa, Esmée A Bakker, Nidhi Gupta, Pasan Hettiarachchi, Peter J Johansson, Lauren B Sherar, Borja Del Pozo Cruz, Nicholas Koemel, Gita D Mishra, Thijs M H Eijsvogels, Sari Stenholm, Alun D Hughes, Armando Teixeira-Pinto, Ulf Ekelund, I-Min Lee, Andreas Holtermann, Annemarie Koster, Emmanuel Stamatakis, Mark Hamer","doi":"10.1161/CIRCULATIONAHA.124.069820","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Blood pressure (BP)-lowering effects of structured exercise are well-established. Effects of 24-hour movement behaviors captured in free-living settings have received less attention. This cross-sectional study investigated associations between a 24-hour behavior composition comprising 6 parts (sleeping, sedentary behavior, standing, slow walking, fast walking, and combined exercise-like activity [eg, running and cycling]) and systolic BP (SBP) and diastolic BP (DBP).</p><p><strong>Methods: </strong>Data from thigh-worn accelerometers and BP measurements were collected from 6 cohorts in the Prospective Physical Activity, Sitting and Sleep consortium (ProPASS) (n=14 761; mean±SD, 54.2±9.6 years). Individual participant analysis using compositional data analysis was conducted with adjustments for relevant harmonized covariates. Based on the average sample composition, reallocation plots examined estimated BP reductions through behavioral replacement; the theoretical benefits of optimal (ie, clinically meaningful improvement in SBP [2 mm Hg] or DBP [1 mm Hg]) and minimal (ie, 5-minute reallocation) behavioral replacements were identified.</p><p><strong>Results: </strong>The average 24-hour composition consisted of sleeping (7.13±1.19 hours), sedentary behavior (10.7±1.9 hours), standing (3.2±1.1 hours), slow walking (1.6±0.6 hours), fast walking (1.1±0.5 hours), and exercise-like activity (16.0±16.3 minutes). More time spent exercising or sleeping, relative to other behaviors, was associated with lower BP. An additional 5 minutes of exercise-like activity was associated with estimated reductions of -0.68 mm Hg (95% CI, -0.15, -1.21) SBP and -0.54 mm Hg (95% CI, -0.19, 0.89) DBP. Clinically meaningful improvements in SBP and DBP were estimated after 20 to 27 minutes and 10 to 15 minutes of reallocation of time in other behaviors into additional exercise. Although more time spent being sedentary was adversely associated with SBP and DBP, there was minimal impact of standing or walking.</p><p><strong>Conclusions: </strong>Study findings reiterate the importance of exercise for BP control, suggesting that small additional amounts of exercise are associated with lower BP in a free-living setting.</p>","PeriodicalId":10331,"journal":{"name":"Circulation","volume":" ","pages":"159-170"},"PeriodicalIF":35.5000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Device-Measured 24-Hour Movement Behaviors and Blood Pressure: A 6-Part Compositional Individual Participant Data Analysis in the ProPASS Consortium.\",\"authors\":\"Joanna M Blodgett, Matthew N Ahmadi, Andrew J Atkin, Richard M Pulsford, Vegar Rangul, Sebastien Chastin, Hsiu-Wen Chan, Kristin Suorsa, Esmée A Bakker, Nidhi Gupta, Pasan Hettiarachchi, Peter J Johansson, Lauren B Sherar, Borja Del Pozo Cruz, Nicholas Koemel, Gita D Mishra, Thijs M H Eijsvogels, Sari Stenholm, Alun D Hughes, Armando Teixeira-Pinto, Ulf Ekelund, I-Min Lee, Andreas Holtermann, Annemarie Koster, Emmanuel Stamatakis, Mark Hamer\",\"doi\":\"10.1161/CIRCULATIONAHA.124.069820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Blood pressure (BP)-lowering effects of structured exercise are well-established. Effects of 24-hour movement behaviors captured in free-living settings have received less attention. This cross-sectional study investigated associations between a 24-hour behavior composition comprising 6 parts (sleeping, sedentary behavior, standing, slow walking, fast walking, and combined exercise-like activity [eg, running and cycling]) and systolic BP (SBP) and diastolic BP (DBP).</p><p><strong>Methods: </strong>Data from thigh-worn accelerometers and BP measurements were collected from 6 cohorts in the Prospective Physical Activity, Sitting and Sleep consortium (ProPASS) (n=14 761; mean±SD, 54.2±9.6 years). Individual participant analysis using compositional data analysis was conducted with adjustments for relevant harmonized covariates. Based on the average sample composition, reallocation plots examined estimated BP reductions through behavioral replacement; the theoretical benefits of optimal (ie, clinically meaningful improvement in SBP [2 mm Hg] or DBP [1 mm Hg]) and minimal (ie, 5-minute reallocation) behavioral replacements were identified.</p><p><strong>Results: </strong>The average 24-hour composition consisted of sleeping (7.13±1.19 hours), sedentary behavior (10.7±1.9 hours), standing (3.2±1.1 hours), slow walking (1.6±0.6 hours), fast walking (1.1±0.5 hours), and exercise-like activity (16.0±16.3 minutes). More time spent exercising or sleeping, relative to other behaviors, was associated with lower BP. An additional 5 minutes of exercise-like activity was associated with estimated reductions of -0.68 mm Hg (95% CI, -0.15, -1.21) SBP and -0.54 mm Hg (95% CI, -0.19, 0.89) DBP. Clinically meaningful improvements in SBP and DBP were estimated after 20 to 27 minutes and 10 to 15 minutes of reallocation of time in other behaviors into additional exercise. Although more time spent being sedentary was adversely associated with SBP and DBP, there was minimal impact of standing or walking.</p><p><strong>Conclusions: </strong>Study findings reiterate the importance of exercise for BP control, suggesting that small additional amounts of exercise are associated with lower BP in a free-living setting.</p>\",\"PeriodicalId\":10331,\"journal\":{\"name\":\"Circulation\",\"volume\":\" \",\"pages\":\"159-170\"},\"PeriodicalIF\":35.5000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Circulation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1161/CIRCULATIONAHA.124.069820\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/CIRCULATIONAHA.124.069820","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Device-Measured 24-Hour Movement Behaviors and Blood Pressure: A 6-Part Compositional Individual Participant Data Analysis in the ProPASS Consortium.
Background: Blood pressure (BP)-lowering effects of structured exercise are well-established. Effects of 24-hour movement behaviors captured in free-living settings have received less attention. This cross-sectional study investigated associations between a 24-hour behavior composition comprising 6 parts (sleeping, sedentary behavior, standing, slow walking, fast walking, and combined exercise-like activity [eg, running and cycling]) and systolic BP (SBP) and diastolic BP (DBP).
Methods: Data from thigh-worn accelerometers and BP measurements were collected from 6 cohorts in the Prospective Physical Activity, Sitting and Sleep consortium (ProPASS) (n=14 761; mean±SD, 54.2±9.6 years). Individual participant analysis using compositional data analysis was conducted with adjustments for relevant harmonized covariates. Based on the average sample composition, reallocation plots examined estimated BP reductions through behavioral replacement; the theoretical benefits of optimal (ie, clinically meaningful improvement in SBP [2 mm Hg] or DBP [1 mm Hg]) and minimal (ie, 5-minute reallocation) behavioral replacements were identified.
Results: The average 24-hour composition consisted of sleeping (7.13±1.19 hours), sedentary behavior (10.7±1.9 hours), standing (3.2±1.1 hours), slow walking (1.6±0.6 hours), fast walking (1.1±0.5 hours), and exercise-like activity (16.0±16.3 minutes). More time spent exercising or sleeping, relative to other behaviors, was associated with lower BP. An additional 5 minutes of exercise-like activity was associated with estimated reductions of -0.68 mm Hg (95% CI, -0.15, -1.21) SBP and -0.54 mm Hg (95% CI, -0.19, 0.89) DBP. Clinically meaningful improvements in SBP and DBP were estimated after 20 to 27 minutes and 10 to 15 minutes of reallocation of time in other behaviors into additional exercise. Although more time spent being sedentary was adversely associated with SBP and DBP, there was minimal impact of standing or walking.
Conclusions: Study findings reiterate the importance of exercise for BP control, suggesting that small additional amounts of exercise are associated with lower BP in a free-living setting.
期刊介绍:
Circulation is a platform that publishes a diverse range of content related to cardiovascular health and disease. This includes original research manuscripts, review articles, and other contributions spanning observational studies, clinical trials, epidemiology, health services, outcomes studies, and advancements in basic and translational research. The journal serves as a vital resource for professionals and researchers in the field of cardiovascular health, providing a comprehensive platform for disseminating knowledge and fostering advancements in the understanding and management of cardiovascular issues.