Xiao Rong, Xi Xiang, Yicheng Zhao, Li Qiu, Fangxue DU
{"title":"[仿生姜黄素介导的黑色素瘤声动力疗法实验研究]。","authors":"Xiao Rong, Xi Xiang, Yicheng Zhao, Li Qiu, Fangxue DU","doi":"10.12182/20240960108","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To study the role of curcumin-mediated sonodynamic therapy in the treatment of malignant melanoma, and to provide a new strategy for the treatment of malignant melanoma.</p><p><strong>Methods: </strong>The ultrasonic sound and vibration method was applied to coat curcumin with mouse melanoma cell membrane, thereby forming biomimetic curcumin. The morphology of biomimetic curcumin was observed by transmission electron microscope. Flow cytometry was used to analyze the effect of biomimetic curcumin in terms of <i>in vitro</i> targeting, apoptosis, and intracellular reactive oxygen species (ROS) production. The <i>in vivo</i> experiment was divided into control group, US group, turmeric group, imitation turmeric group, and imitation turmeric+US group, with 3 mice in each group. The <i>in vivo</i> safety of biomimetic curcumin was evaluated by HE staining. In addition, HE, CD31, Ki67, and TUNEL stainings were performed to evaluate the <i>in vivo</i> anti-melanoma therapeutic effect of ultrasound combined with biomimetic curcumin.</p><p><strong>Results: </strong>The biomimetic curcumin had a generally uniform morphology and possessed a core-shell structure. Flow cytometry analysis performed with FlowJo showed that the biomimetic curcumin could be effectively taken up by melanoma cells. The apoptosis rate was (10.30±0.61)% in the control group, (10.41±3.13)% in the ultrasound group, (24.97±1.38)% in the curcumin group, (31.39±3.84)% in the biomimetic curcumin group, and (40.89±0.79)% in the biomimetic curcumin and ultrasound combination group. The apoptosis rate in the biomimetic curcumin and ultrasound combination group was higher than those in the other groups (<i>P</i><0.05). The results of ROS flow cytometry showed that, compared with the control group, the ultrasound group demonstrated almost no increase in the fluorescence intensity, while the other groups showed an increase in the fluorescence intensity to varying degrees. There was no significant difference in the fluorescence intensity between the biomimetic curcumin group ([1.10±0.38]%) and the curcumin group ([0.73±0.26]%) (<i>P</i>>0.05). The fluorescence intensity of the biomimetic curcumin and ultrasound combination group ([3.35±0.04]%) was higher than those of the other groups (<i>P</i><0.05). HE staining showed no obvious abnormalities in the morphology of heart, liver, spleen, lung, and kidney tissues in any of the treatment groups. HE staining showed the most significant changes in cell morphology in the biomimetic curcumin and ultrasound combination group, followed by the biomimetic curcumin group and the curcumin group. No obvious abnormalities in tumor cell morphology were observed in the ultrasound group. According to the respective results of CD31 staining, Ki67 staining, and TUNEL staining, the biomimetic curcumin and ultrasound combination group had the largest brown area, the highest number of red fluorescence, and the highest number of green fluorescence, followed by the biomimetic curcumin group and the curcumin group.</p><p><strong>Conclusion: </strong>The biomimetic curcumin displays uniform morphology, a core-shell structure, and good targeting properties. When it is used in combination with ultrasound, biomimetic curcumin demonstrates a good anti-tumor therapeutic effect both <i>in vivo</i> and <i>in vitro</i>.</p>","PeriodicalId":39321,"journal":{"name":"四川大学学报(医学版)","volume":"55 5","pages":"1159-1165"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11536226/pdf/","citationCount":"0","resultStr":"{\"title\":\"[Experimental Study on Biomimetic Curcumin-Mediated Sonodynamic Therapy of Melanoma].\",\"authors\":\"Xiao Rong, Xi Xiang, Yicheng Zhao, Li Qiu, Fangxue DU\",\"doi\":\"10.12182/20240960108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>To study the role of curcumin-mediated sonodynamic therapy in the treatment of malignant melanoma, and to provide a new strategy for the treatment of malignant melanoma.</p><p><strong>Methods: </strong>The ultrasonic sound and vibration method was applied to coat curcumin with mouse melanoma cell membrane, thereby forming biomimetic curcumin. The morphology of biomimetic curcumin was observed by transmission electron microscope. Flow cytometry was used to analyze the effect of biomimetic curcumin in terms of <i>in vitro</i> targeting, apoptosis, and intracellular reactive oxygen species (ROS) production. The <i>in vivo</i> experiment was divided into control group, US group, turmeric group, imitation turmeric group, and imitation turmeric+US group, with 3 mice in each group. The <i>in vivo</i> safety of biomimetic curcumin was evaluated by HE staining. In addition, HE, CD31, Ki67, and TUNEL stainings were performed to evaluate the <i>in vivo</i> anti-melanoma therapeutic effect of ultrasound combined with biomimetic curcumin.</p><p><strong>Results: </strong>The biomimetic curcumin had a generally uniform morphology and possessed a core-shell structure. Flow cytometry analysis performed with FlowJo showed that the biomimetic curcumin could be effectively taken up by melanoma cells. The apoptosis rate was (10.30±0.61)% in the control group, (10.41±3.13)% in the ultrasound group, (24.97±1.38)% in the curcumin group, (31.39±3.84)% in the biomimetic curcumin group, and (40.89±0.79)% in the biomimetic curcumin and ultrasound combination group. The apoptosis rate in the biomimetic curcumin and ultrasound combination group was higher than those in the other groups (<i>P</i><0.05). The results of ROS flow cytometry showed that, compared with the control group, the ultrasound group demonstrated almost no increase in the fluorescence intensity, while the other groups showed an increase in the fluorescence intensity to varying degrees. There was no significant difference in the fluorescence intensity between the biomimetic curcumin group ([1.10±0.38]%) and the curcumin group ([0.73±0.26]%) (<i>P</i>>0.05). The fluorescence intensity of the biomimetic curcumin and ultrasound combination group ([3.35±0.04]%) was higher than those of the other groups (<i>P</i><0.05). HE staining showed no obvious abnormalities in the morphology of heart, liver, spleen, lung, and kidney tissues in any of the treatment groups. HE staining showed the most significant changes in cell morphology in the biomimetic curcumin and ultrasound combination group, followed by the biomimetic curcumin group and the curcumin group. No obvious abnormalities in tumor cell morphology were observed in the ultrasound group. According to the respective results of CD31 staining, Ki67 staining, and TUNEL staining, the biomimetic curcumin and ultrasound combination group had the largest brown area, the highest number of red fluorescence, and the highest number of green fluorescence, followed by the biomimetic curcumin group and the curcumin group.</p><p><strong>Conclusion: </strong>The biomimetic curcumin displays uniform morphology, a core-shell structure, and good targeting properties. When it is used in combination with ultrasound, biomimetic curcumin demonstrates a good anti-tumor therapeutic effect both <i>in vivo</i> and <i>in vitro</i>.</p>\",\"PeriodicalId\":39321,\"journal\":{\"name\":\"四川大学学报(医学版)\",\"volume\":\"55 5\",\"pages\":\"1159-1165\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11536226/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"四川大学学报(医学版)\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.12182/20240960108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"四川大学学报(医学版)","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.12182/20240960108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
[Experimental Study on Biomimetic Curcumin-Mediated Sonodynamic Therapy of Melanoma].
Objective: To study the role of curcumin-mediated sonodynamic therapy in the treatment of malignant melanoma, and to provide a new strategy for the treatment of malignant melanoma.
Methods: The ultrasonic sound and vibration method was applied to coat curcumin with mouse melanoma cell membrane, thereby forming biomimetic curcumin. The morphology of biomimetic curcumin was observed by transmission electron microscope. Flow cytometry was used to analyze the effect of biomimetic curcumin in terms of in vitro targeting, apoptosis, and intracellular reactive oxygen species (ROS) production. The in vivo experiment was divided into control group, US group, turmeric group, imitation turmeric group, and imitation turmeric+US group, with 3 mice in each group. The in vivo safety of biomimetic curcumin was evaluated by HE staining. In addition, HE, CD31, Ki67, and TUNEL stainings were performed to evaluate the in vivo anti-melanoma therapeutic effect of ultrasound combined with biomimetic curcumin.
Results: The biomimetic curcumin had a generally uniform morphology and possessed a core-shell structure. Flow cytometry analysis performed with FlowJo showed that the biomimetic curcumin could be effectively taken up by melanoma cells. The apoptosis rate was (10.30±0.61)% in the control group, (10.41±3.13)% in the ultrasound group, (24.97±1.38)% in the curcumin group, (31.39±3.84)% in the biomimetic curcumin group, and (40.89±0.79)% in the biomimetic curcumin and ultrasound combination group. The apoptosis rate in the biomimetic curcumin and ultrasound combination group was higher than those in the other groups (P<0.05). The results of ROS flow cytometry showed that, compared with the control group, the ultrasound group demonstrated almost no increase in the fluorescence intensity, while the other groups showed an increase in the fluorescence intensity to varying degrees. There was no significant difference in the fluorescence intensity between the biomimetic curcumin group ([1.10±0.38]%) and the curcumin group ([0.73±0.26]%) (P>0.05). The fluorescence intensity of the biomimetic curcumin and ultrasound combination group ([3.35±0.04]%) was higher than those of the other groups (P<0.05). HE staining showed no obvious abnormalities in the morphology of heart, liver, spleen, lung, and kidney tissues in any of the treatment groups. HE staining showed the most significant changes in cell morphology in the biomimetic curcumin and ultrasound combination group, followed by the biomimetic curcumin group and the curcumin group. No obvious abnormalities in tumor cell morphology were observed in the ultrasound group. According to the respective results of CD31 staining, Ki67 staining, and TUNEL staining, the biomimetic curcumin and ultrasound combination group had the largest brown area, the highest number of red fluorescence, and the highest number of green fluorescence, followed by the biomimetic curcumin group and the curcumin group.
Conclusion: The biomimetic curcumin displays uniform morphology, a core-shell structure, and good targeting properties. When it is used in combination with ultrasound, biomimetic curcumin demonstrates a good anti-tumor therapeutic effect both in vivo and in vitro.
四川大学学报(医学版)Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
0.70
自引率
0.00%
发文量
8695
期刊介绍:
"Journal of Sichuan University (Medical Edition)" is a comprehensive medical academic journal sponsored by Sichuan University, a higher education institution directly under the Ministry of Education of the People's Republic of China. It was founded in 1959 and was originally named "Journal of Sichuan Medical College". In 1986, it was renamed "Journal of West China University of Medical Sciences". In 2003, it was renamed "Journal of Sichuan University (Medical Edition)" (bimonthly).
"Journal of Sichuan University (Medical Edition)" is a Chinese core journal and a Chinese authoritative academic journal (RCCSE). It is included in the retrieval systems such as China Science and Technology Papers and Citation Database (CSTPCD), China Science Citation Database (CSCD) (core version), Peking University Library's "Overview of Chinese Core Journals", the U.S. "Index Medica" (IM/Medline), the U.S. "PubMed Central" (PMC), the U.S. "Biological Abstracts" (BA), the U.S. "Chemical Abstracts" (CA), the U.S. EBSCO, the Netherlands "Abstracts and Citation Database" (Scopus), the Japan Science and Technology Agency Database (JST), the Russian "Abstract Magazine", the Chinese Biomedical Literature CD-ROM Database (CBMdisc), the Chinese Biomedical Periodical Literature Database (CMCC), the China Academic Journal Network Full-text Database (CNKI), the Chinese Academic Journal (CD-ROM Edition), and the Wanfang Data-Digital Journal Group.