Yi-Sheng He, Yi-Qing Xu, Fan Cao, Zhao-Xing Gao, Man Ge, Tian He, Peng Zhang, Chan-Na Zhao, Peng Wang, Zhiwei Xu, Hai-Feng Pan
{"title":"长期暴露于 PM2.5 成分和绿地与关节炎和类风湿性关节炎的关系。","authors":"Yi-Sheng He, Yi-Qing Xu, Fan Cao, Zhao-Xing Gao, Man Ge, Tian He, Peng Zhang, Chan-Na Zhao, Peng Wang, Zhiwei Xu, Hai-Feng Pan","doi":"10.1029/2024GH001132","DOIUrl":null,"url":null,"abstract":"<p>There is limited evidence regarding the effects of long-term exposure to PM<sub>2.5</sub> constituents on the risk of arthritis and rheumatoid arthritis, and the interaction between PM<sub>2.5</sub> and green space remains unclear. This study examined the relationship between long-term exposure to PM<sub>2.5</sub> constituents and the risk of arthritis and rheumatoid arthritis, with the exposure period extending from recruitment until self-reported outcomes, death, loss to follow-up, or end of follow-up. Additionally, the study assessed whether there was an interactive effect between PM<sub>2.5</sub> and green space on these risks. We gathered cohort data on 18,649 individuals aged ≥45 years. We applied generalized linear mixed-effects models to estimate the effects of PM<sub>2.5</sub> constituents, NDVI, and their interaction on arthritis and rheumatoid arthritis. The quantile g-computation and weighted quantile sum regression model were applied to estimate the combined effect of PM<sub>2.5</sub> constituents. Our results showed that exposure to single and mixed PM<sub>2.5</sub> constituents adversely affected arthritis and rheumatoid arthritis, and was mainly attributed to the black carbon component. We observed “U” or “J” shaped exposure-response curves for the effects of PM<sub>2.5</sub>, OM, NO<sub>3</sub><sup>−</sup> and NH<sub>4</sub><sup>+</sup> exposure on the development of arthritis/rheumatoid arthritis. Additionally, the odds ratio of arthritis for per interquartile range (IQR) increase in PM<sub>2.5</sub> was 1.209 (95% CI:1.198, 1.221), per 0.1-unit decrease in NDVI was 1.091 (95% CI:1.033, 1.151), and the interaction term was 1.005 (95% CI:1.002, 1.007). These findings flesh out the existing evidence for PM<sub>2.5</sub> constituents, NDVI and arthritis, rheumatoid arthritis, but the underlying mechanisms still require further exploration.</p>","PeriodicalId":48618,"journal":{"name":"Geohealth","volume":"8 11","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538738/pdf/","citationCount":"0","resultStr":"{\"title\":\"Association of Long-Term Exposure to PM2.5 Constituents and Green Space With Arthritis and Rheumatoid Arthritis\",\"authors\":\"Yi-Sheng He, Yi-Qing Xu, Fan Cao, Zhao-Xing Gao, Man Ge, Tian He, Peng Zhang, Chan-Na Zhao, Peng Wang, Zhiwei Xu, Hai-Feng Pan\",\"doi\":\"10.1029/2024GH001132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>There is limited evidence regarding the effects of long-term exposure to PM<sub>2.5</sub> constituents on the risk of arthritis and rheumatoid arthritis, and the interaction between PM<sub>2.5</sub> and green space remains unclear. This study examined the relationship between long-term exposure to PM<sub>2.5</sub> constituents and the risk of arthritis and rheumatoid arthritis, with the exposure period extending from recruitment until self-reported outcomes, death, loss to follow-up, or end of follow-up. Additionally, the study assessed whether there was an interactive effect between PM<sub>2.5</sub> and green space on these risks. We gathered cohort data on 18,649 individuals aged ≥45 years. We applied generalized linear mixed-effects models to estimate the effects of PM<sub>2.5</sub> constituents, NDVI, and their interaction on arthritis and rheumatoid arthritis. The quantile g-computation and weighted quantile sum regression model were applied to estimate the combined effect of PM<sub>2.5</sub> constituents. Our results showed that exposure to single and mixed PM<sub>2.5</sub> constituents adversely affected arthritis and rheumatoid arthritis, and was mainly attributed to the black carbon component. We observed “U” or “J” shaped exposure-response curves for the effects of PM<sub>2.5</sub>, OM, NO<sub>3</sub><sup>−</sup> and NH<sub>4</sub><sup>+</sup> exposure on the development of arthritis/rheumatoid arthritis. Additionally, the odds ratio of arthritis for per interquartile range (IQR) increase in PM<sub>2.5</sub> was 1.209 (95% CI:1.198, 1.221), per 0.1-unit decrease in NDVI was 1.091 (95% CI:1.033, 1.151), and the interaction term was 1.005 (95% CI:1.002, 1.007). These findings flesh out the existing evidence for PM<sub>2.5</sub> constituents, NDVI and arthritis, rheumatoid arthritis, but the underlying mechanisms still require further exploration.</p>\",\"PeriodicalId\":48618,\"journal\":{\"name\":\"Geohealth\",\"volume\":\"8 11\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538738/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geohealth\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024GH001132\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geohealth","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GH001132","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Association of Long-Term Exposure to PM2.5 Constituents and Green Space With Arthritis and Rheumatoid Arthritis
There is limited evidence regarding the effects of long-term exposure to PM2.5 constituents on the risk of arthritis and rheumatoid arthritis, and the interaction between PM2.5 and green space remains unclear. This study examined the relationship between long-term exposure to PM2.5 constituents and the risk of arthritis and rheumatoid arthritis, with the exposure period extending from recruitment until self-reported outcomes, death, loss to follow-up, or end of follow-up. Additionally, the study assessed whether there was an interactive effect between PM2.5 and green space on these risks. We gathered cohort data on 18,649 individuals aged ≥45 years. We applied generalized linear mixed-effects models to estimate the effects of PM2.5 constituents, NDVI, and their interaction on arthritis and rheumatoid arthritis. The quantile g-computation and weighted quantile sum regression model were applied to estimate the combined effect of PM2.5 constituents. Our results showed that exposure to single and mixed PM2.5 constituents adversely affected arthritis and rheumatoid arthritis, and was mainly attributed to the black carbon component. We observed “U” or “J” shaped exposure-response curves for the effects of PM2.5, OM, NO3− and NH4+ exposure on the development of arthritis/rheumatoid arthritis. Additionally, the odds ratio of arthritis for per interquartile range (IQR) increase in PM2.5 was 1.209 (95% CI:1.198, 1.221), per 0.1-unit decrease in NDVI was 1.091 (95% CI:1.033, 1.151), and the interaction term was 1.005 (95% CI:1.002, 1.007). These findings flesh out the existing evidence for PM2.5 constituents, NDVI and arthritis, rheumatoid arthritis, but the underlying mechanisms still require further exploration.
期刊介绍:
GeoHealth will publish original research, reviews, policy discussions, and commentaries that cover the growing science on the interface among the Earth, atmospheric, oceans and environmental sciences, ecology, and the agricultural and health sciences. The journal will cover a wide variety of global and local issues including the impacts of climate change on human, agricultural, and ecosystem health, air and water pollution, environmental persistence of herbicides and pesticides, radiation and health, geomedicine, and the health effects of disasters. Many of these topics and others are of critical importance in the developing world and all require bringing together leading research across multiple disciplines.