{"title":"[利用声动力疗法诱导肝癌脓毒症治疗]。","authors":"Nisi Zhang, Zhifei Dai","doi":"10.12182/20240960210","DOIUrl":null,"url":null,"abstract":"<p><p>Liver cancer is one of the leading causes of cancer-related deaths worldwide. However, all liver cancer treatment options currently available fail to achieve a complete cure. Recently, research on pyroptosis has attracted significant attention from researchers in the field of cancer therapy. Pyroptosis is an inflammatory cell death closely related to oxidative stress caused by reactive oxygen species (ROS). The induction of pyroptosis can lead to the inhibition of tumor proliferation and the improvement of tumor immune responsiveness and is considered a novel therapeutic mechanism that can be utilized to develop new cancer therapies. Sonodynamic therapy (SDT), which involves a synergistic application of sonosensitizers and low-intensity focused ultrasound to generate cytotoxic ROS, demonstrates certain advantages and potentials in the treatment of liver cancer. However, liver cancer treatment utilizing SDT is still in the stage of preclinical research, and the specific conditions of ultrasound treatment, the biological effects, and the mechanisms of action are not fully understood. In this review, we discussed the potential of utilizing pyroptosis in liver cancer treatment, the mechanism of cancer therapy with ROS generated by SDT, and the latest findings concerning SDT from clinical and basic research. We discussed the utilization of SDT to force the accumulation of ROS in tumors to exceed the cytotoxicity threshold. Thus, SDT promotes pyroptosis and enhances the immune response to cancer. Furthermore, we discussed the prospects for applying the mechanism of SDT-induced pyroptosis in cancer therapy, thereby providing a better theoretical and experimental foundation for the clinical translation of SDT for liver cancer treatment.</p>","PeriodicalId":39321,"journal":{"name":"四川大学学报(医学版)","volume":"55 5","pages":"1329-1335"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11536237/pdf/","citationCount":"0","resultStr":"{\"title\":\"[Utilizing Sonodynamic Therapy-Induced Pyroptosis for Liver Cancer Therapy].\",\"authors\":\"Nisi Zhang, Zhifei Dai\",\"doi\":\"10.12182/20240960210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Liver cancer is one of the leading causes of cancer-related deaths worldwide. However, all liver cancer treatment options currently available fail to achieve a complete cure. Recently, research on pyroptosis has attracted significant attention from researchers in the field of cancer therapy. Pyroptosis is an inflammatory cell death closely related to oxidative stress caused by reactive oxygen species (ROS). The induction of pyroptosis can lead to the inhibition of tumor proliferation and the improvement of tumor immune responsiveness and is considered a novel therapeutic mechanism that can be utilized to develop new cancer therapies. Sonodynamic therapy (SDT), which involves a synergistic application of sonosensitizers and low-intensity focused ultrasound to generate cytotoxic ROS, demonstrates certain advantages and potentials in the treatment of liver cancer. However, liver cancer treatment utilizing SDT is still in the stage of preclinical research, and the specific conditions of ultrasound treatment, the biological effects, and the mechanisms of action are not fully understood. In this review, we discussed the potential of utilizing pyroptosis in liver cancer treatment, the mechanism of cancer therapy with ROS generated by SDT, and the latest findings concerning SDT from clinical and basic research. We discussed the utilization of SDT to force the accumulation of ROS in tumors to exceed the cytotoxicity threshold. Thus, SDT promotes pyroptosis and enhances the immune response to cancer. Furthermore, we discussed the prospects for applying the mechanism of SDT-induced pyroptosis in cancer therapy, thereby providing a better theoretical and experimental foundation for the clinical translation of SDT for liver cancer treatment.</p>\",\"PeriodicalId\":39321,\"journal\":{\"name\":\"四川大学学报(医学版)\",\"volume\":\"55 5\",\"pages\":\"1329-1335\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11536237/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"四川大学学报(医学版)\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.12182/20240960210\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"四川大学学报(医学版)","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.12182/20240960210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
[Utilizing Sonodynamic Therapy-Induced Pyroptosis for Liver Cancer Therapy].
Liver cancer is one of the leading causes of cancer-related deaths worldwide. However, all liver cancer treatment options currently available fail to achieve a complete cure. Recently, research on pyroptosis has attracted significant attention from researchers in the field of cancer therapy. Pyroptosis is an inflammatory cell death closely related to oxidative stress caused by reactive oxygen species (ROS). The induction of pyroptosis can lead to the inhibition of tumor proliferation and the improvement of tumor immune responsiveness and is considered a novel therapeutic mechanism that can be utilized to develop new cancer therapies. Sonodynamic therapy (SDT), which involves a synergistic application of sonosensitizers and low-intensity focused ultrasound to generate cytotoxic ROS, demonstrates certain advantages and potentials in the treatment of liver cancer. However, liver cancer treatment utilizing SDT is still in the stage of preclinical research, and the specific conditions of ultrasound treatment, the biological effects, and the mechanisms of action are not fully understood. In this review, we discussed the potential of utilizing pyroptosis in liver cancer treatment, the mechanism of cancer therapy with ROS generated by SDT, and the latest findings concerning SDT from clinical and basic research. We discussed the utilization of SDT to force the accumulation of ROS in tumors to exceed the cytotoxicity threshold. Thus, SDT promotes pyroptosis and enhances the immune response to cancer. Furthermore, we discussed the prospects for applying the mechanism of SDT-induced pyroptosis in cancer therapy, thereby providing a better theoretical and experimental foundation for the clinical translation of SDT for liver cancer treatment.
四川大学学报(医学版)Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
0.70
自引率
0.00%
发文量
8695
期刊介绍:
"Journal of Sichuan University (Medical Edition)" is a comprehensive medical academic journal sponsored by Sichuan University, a higher education institution directly under the Ministry of Education of the People's Republic of China. It was founded in 1959 and was originally named "Journal of Sichuan Medical College". In 1986, it was renamed "Journal of West China University of Medical Sciences". In 2003, it was renamed "Journal of Sichuan University (Medical Edition)" (bimonthly).
"Journal of Sichuan University (Medical Edition)" is a Chinese core journal and a Chinese authoritative academic journal (RCCSE). It is included in the retrieval systems such as China Science and Technology Papers and Citation Database (CSTPCD), China Science Citation Database (CSCD) (core version), Peking University Library's "Overview of Chinese Core Journals", the U.S. "Index Medica" (IM/Medline), the U.S. "PubMed Central" (PMC), the U.S. "Biological Abstracts" (BA), the U.S. "Chemical Abstracts" (CA), the U.S. EBSCO, the Netherlands "Abstracts and Citation Database" (Scopus), the Japan Science and Technology Agency Database (JST), the Russian "Abstract Magazine", the Chinese Biomedical Literature CD-ROM Database (CBMdisc), the Chinese Biomedical Periodical Literature Database (CMCC), the China Academic Journal Network Full-text Database (CNKI), the Chinese Academic Journal (CD-ROM Edition), and the Wanfang Data-Digital Journal Group.