Tadahiko Kato, Kei Maeda, Jun Mizushima, Akira Maeda
{"title":"旋转铅球技术理论模型研究","authors":"Tadahiko Kato, Kei Maeda, Jun Mizushima, Akira Maeda","doi":"10.1123/jab.2023-0233","DOIUrl":null,"url":null,"abstract":"<p><p>The biomechanics of the rotational shot put technique have been demonstrated. However, the causal relationships among kinematics and kinetics for achieving higher release velocity remain poorly understood. This study investigated these causal relationships among biomechanical variables for achieving a higher release velocity in the rotational shot put technique. The study included 22 male shot putters whose 3-dimensional motion was captured during official competitions. Key kinematic and kinetic variables throughout the shot put motion were calculated, as suggested by previous studies. Path analysis was used to explore a hierarchical model that postulates both direct and indirect effects among variables. The findings revealed that the impulse of the shot, system angular momentum, and system linear momentum were critical kinetic variables contributing directly to release velocity. Additionally, 8 kinematic variables significantly affected the impulse of the shot, including shoulder rotation, shot path length, and trunk tilt, while movements such as swings and extensions of the lower extremities were related to system momentum. This model not only provides a detailed understanding of the mechanics involved in the rotational technique but also informs technical coaching strategies in the shot put.</p>","PeriodicalId":54883,"journal":{"name":"Journal of Applied Biomechanics","volume":" ","pages":"528-536"},"PeriodicalIF":1.1000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of a Theoretical Model for the Rotational Shot Put Technique.\",\"authors\":\"Tadahiko Kato, Kei Maeda, Jun Mizushima, Akira Maeda\",\"doi\":\"10.1123/jab.2023-0233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The biomechanics of the rotational shot put technique have been demonstrated. However, the causal relationships among kinematics and kinetics for achieving higher release velocity remain poorly understood. This study investigated these causal relationships among biomechanical variables for achieving a higher release velocity in the rotational shot put technique. The study included 22 male shot putters whose 3-dimensional motion was captured during official competitions. Key kinematic and kinetic variables throughout the shot put motion were calculated, as suggested by previous studies. Path analysis was used to explore a hierarchical model that postulates both direct and indirect effects among variables. The findings revealed that the impulse of the shot, system angular momentum, and system linear momentum were critical kinetic variables contributing directly to release velocity. Additionally, 8 kinematic variables significantly affected the impulse of the shot, including shoulder rotation, shot path length, and trunk tilt, while movements such as swings and extensions of the lower extremities were related to system momentum. This model not only provides a detailed understanding of the mechanics involved in the rotational technique but also informs technical coaching strategies in the shot put.</p>\",\"PeriodicalId\":54883,\"journal\":{\"name\":\"Journal of Applied Biomechanics\",\"volume\":\" \",\"pages\":\"528-536\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Biomechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1123/jab.2023-0233\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1123/jab.2023-0233","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Investigation of a Theoretical Model for the Rotational Shot Put Technique.
The biomechanics of the rotational shot put technique have been demonstrated. However, the causal relationships among kinematics and kinetics for achieving higher release velocity remain poorly understood. This study investigated these causal relationships among biomechanical variables for achieving a higher release velocity in the rotational shot put technique. The study included 22 male shot putters whose 3-dimensional motion was captured during official competitions. Key kinematic and kinetic variables throughout the shot put motion were calculated, as suggested by previous studies. Path analysis was used to explore a hierarchical model that postulates both direct and indirect effects among variables. The findings revealed that the impulse of the shot, system angular momentum, and system linear momentum were critical kinetic variables contributing directly to release velocity. Additionally, 8 kinematic variables significantly affected the impulse of the shot, including shoulder rotation, shot path length, and trunk tilt, while movements such as swings and extensions of the lower extremities were related to system momentum. This model not only provides a detailed understanding of the mechanics involved in the rotational technique but also informs technical coaching strategies in the shot put.
期刊介绍:
The mission of the Journal of Applied Biomechanics (JAB) is to disseminate the highest quality peer-reviewed studies that utilize biomechanical strategies to advance the study of human movement. Areas of interest include clinical biomechanics, gait and posture mechanics, musculoskeletal and neuromuscular biomechanics, sport mechanics, and biomechanical modeling. Studies of sport performance that explicitly generalize to broader activities, contribute substantially to fundamental understanding of human motion, or are in a sport that enjoys wide participation, are welcome. Also within the scope of JAB are studies using biomechanical strategies to investigate the structure, control, function, and state (health and disease) of animals.