ADTGP:利用高斯过程回归校正单细胞抗体测序数据。

Alex C H Liu, Steven M Chan
{"title":"ADTGP:利用高斯过程回归校正单细胞抗体测序数据。","authors":"Alex C H Liu, Steven M Chan","doi":"10.1093/bioinformatics/btae660","DOIUrl":null,"url":null,"abstract":"<p><strong>Summary: </strong>We present ADTGP, an R package that uses Gaussian process regression to correct droplet-specific technical noise in single-cell protein sequencing data. ADTGP improves the interpretability of the data by modeling the distribution of protein expression, conditioned on equal isotype control counts across cells. ADTGP is written in R and needs only the protein raw counts, isotype control raw counts, and a design matrix to run.</p><p><strong>Availability and implementation: </strong>ADTGP can be installed from https://github.com/northNomad/ADTGP. It depends on Stan and the R package 'cmdstanr'.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11568108/pdf/","citationCount":"0","resultStr":"{\"title\":\"ADTGP: correcting single-cell antibody sequencing data using Gaussian process regression.\",\"authors\":\"Alex C H Liu, Steven M Chan\",\"doi\":\"10.1093/bioinformatics/btae660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Summary: </strong>We present ADTGP, an R package that uses Gaussian process regression to correct droplet-specific technical noise in single-cell protein sequencing data. ADTGP improves the interpretability of the data by modeling the distribution of protein expression, conditioned on equal isotype control counts across cells. ADTGP is written in R and needs only the protein raw counts, isotype control raw counts, and a design matrix to run.</p><p><strong>Availability and implementation: </strong>ADTGP can be installed from https://github.com/northNomad/ADTGP. It depends on Stan and the R package 'cmdstanr'.</p>\",\"PeriodicalId\":93899,\"journal\":{\"name\":\"Bioinformatics (Oxford, England)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11568108/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics (Oxford, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioinformatics/btae660\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btae660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要:我们介绍的 ADTGP 是一个 R 软件包,它使用高斯过程回归校正单细胞蛋白质测序数据中的液滴特异性技术噪声。ADTGP 通过对蛋白质表达的分布进行建模,并以各细胞的同种型对照计数相等为条件,提高了数据的可解释性。ADTGP 用 R 语言编写,运行时只需要蛋白质原始计数、同种型对照原始计数和设计矩阵:ADTGP 可从 https://github.com/northNomad/ADTGP 安装。它依赖于 Stan 和 R 软件包 "cmdstanr"。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ADTGP: correcting single-cell antibody sequencing data using Gaussian process regression.

Summary: We present ADTGP, an R package that uses Gaussian process regression to correct droplet-specific technical noise in single-cell protein sequencing data. ADTGP improves the interpretability of the data by modeling the distribution of protein expression, conditioned on equal isotype control counts across cells. ADTGP is written in R and needs only the protein raw counts, isotype control raw counts, and a design matrix to run.

Availability and implementation: ADTGP can be installed from https://github.com/northNomad/ADTGP. It depends on Stan and the R package 'cmdstanr'.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Phasing Nanopore genome assembly by integrating heterozygous variations and Hi-C data. STRprofiler: efficient comparisons of short tandem repeat profiles for biomedical model authentication. Virtual Tissue Expression Analysis. Fast Polypharmacy Side Effect Prediction Using Tensor Factorisation. Lefser: Implementation of metagenomic biomarker discovery tool, LEfSe, in R.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1