{"title":"GCLink: a graph contrastive link prediction framework for gene regulatory network inference.","authors":"Weiming Yu, Zerun Lin, Miaofang Lan, Le Ou-Yang","doi":"10.1093/bioinformatics/btaf074","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Gene regulatory networks (GRNs) unveil the intricate interactions among genes, pivotal in elucidating the complex biological processes within cells. The advent of single-cell RNA-sequencing (scRNA-seq) enables the inference of GRNs at single-cell resolution. However, the majority of current supervised network inference methods typically concentrate on predicting pairwise gene regulatory interaction, thus failing to fully exploit correlations among all genes and exhibiting limited generalization performance.</p><p><strong>Results: </strong>To address these issues, we propose a graph contrastive link prediction (GCLink) model to infer potential gene regulatory interactions from scRNA-seq data. Based on known gene regulatory interactions and scRNA-seq data, GCLink introduces a graph contrastive learning strategy to aggregate the feature and neighborhood information of genes to learn their representations. This approach reduces the dependence of our model on sample size and enhance its ability in predicting potential gene regulatory interactions. Extensive experiments on real scRNA-seq datasets demonstrate that GCLink outperforms other state-of-the-art methods in most cases. Furthermore, by pretraining GCLink on a source cell line with abundant known regulatory interactions and fine-tuning it on a target cell line with limited amount of known interactions, our GCLink model exhibits good performance in GRN inference, demonstrating its effectiveness in inferring GRNs from datasets with limited known interactions.</p><p><strong>Availability: </strong>The source code and data are available at https://github.com/Yoyiming/GCLink.</p><p><strong>Supplementary information: </strong>Supplementary data are available at Bioinformatics online.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Motivation: Gene regulatory networks (GRNs) unveil the intricate interactions among genes, pivotal in elucidating the complex biological processes within cells. The advent of single-cell RNA-sequencing (scRNA-seq) enables the inference of GRNs at single-cell resolution. However, the majority of current supervised network inference methods typically concentrate on predicting pairwise gene regulatory interaction, thus failing to fully exploit correlations among all genes and exhibiting limited generalization performance.
Results: To address these issues, we propose a graph contrastive link prediction (GCLink) model to infer potential gene regulatory interactions from scRNA-seq data. Based on known gene regulatory interactions and scRNA-seq data, GCLink introduces a graph contrastive learning strategy to aggregate the feature and neighborhood information of genes to learn their representations. This approach reduces the dependence of our model on sample size and enhance its ability in predicting potential gene regulatory interactions. Extensive experiments on real scRNA-seq datasets demonstrate that GCLink outperforms other state-of-the-art methods in most cases. Furthermore, by pretraining GCLink on a source cell line with abundant known regulatory interactions and fine-tuning it on a target cell line with limited amount of known interactions, our GCLink model exhibits good performance in GRN inference, demonstrating its effectiveness in inferring GRNs from datasets with limited known interactions.
Availability: The source code and data are available at https://github.com/Yoyiming/GCLink.
Supplementary information: Supplementary data are available at Bioinformatics online.