短玻璃纤维增强聚酰胺复合材料的制造和性能

IF 1.7 4区 工程技术 Q4 POLYMER SCIENCE International Journal of Polymer Analysis and Characterization Pub Date : 2024-09-13 DOI:10.1080/1023666X.2024.2394222
Bedriye Ucpinar Durmaz , Elnura Artykbaeva , Ayse Aytac
{"title":"短玻璃纤维增强聚酰胺复合材料的制造和性能","authors":"Bedriye Ucpinar Durmaz ,&nbsp;Elnura Artykbaeva ,&nbsp;Ayse Aytac","doi":"10.1080/1023666X.2024.2394222","DOIUrl":null,"url":null,"abstract":"<div><div>This article deals with the impact of short glass fiber (GF) on the performance of 60/40 wt% of polyamide 6/polyamide 12 (PA6/PA12) blend. The short fiber-reinforced composites were fabricated by using melt compounding via twin screw extruder and injection molding. The morphological, water uptake, rheological, thermo-mechanical, and mechanical properties of the composites were discussed. The morphological observations show that the PA6/PA12 blend exhibited compatible morphology and also adhesion between the fiber and matrix was quite strong. The tensile strength/modulus and storage modulus of the blend were substantially improved with GF reinforcement as a result of these morphological findings. While the water uptake of neat PA6 decreased significantly after blending with PA12, the incorporation of GF further reduced the water uptake of the PA6/PA12 blend. The thermomechanical analysis showed the enhancement of the stiffness of the composites and also glass transition temperature increment.</div></div>","PeriodicalId":14236,"journal":{"name":"International Journal of Polymer Analysis and Characterization","volume":"29 8","pages":"Pages 589-601"},"PeriodicalIF":1.7000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication and performance of short glass fiber reinforced polyamide composites\",\"authors\":\"Bedriye Ucpinar Durmaz ,&nbsp;Elnura Artykbaeva ,&nbsp;Ayse Aytac\",\"doi\":\"10.1080/1023666X.2024.2394222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This article deals with the impact of short glass fiber (GF) on the performance of 60/40 wt% of polyamide 6/polyamide 12 (PA6/PA12) blend. The short fiber-reinforced composites were fabricated by using melt compounding via twin screw extruder and injection molding. The morphological, water uptake, rheological, thermo-mechanical, and mechanical properties of the composites were discussed. The morphological observations show that the PA6/PA12 blend exhibited compatible morphology and also adhesion between the fiber and matrix was quite strong. The tensile strength/modulus and storage modulus of the blend were substantially improved with GF reinforcement as a result of these morphological findings. While the water uptake of neat PA6 decreased significantly after blending with PA12, the incorporation of GF further reduced the water uptake of the PA6/PA12 blend. The thermomechanical analysis showed the enhancement of the stiffness of the composites and also glass transition temperature increment.</div></div>\",\"PeriodicalId\":14236,\"journal\":{\"name\":\"International Journal of Polymer Analysis and Characterization\",\"volume\":\"29 8\",\"pages\":\"Pages 589-601\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Polymer Analysis and Characterization\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1023666X24000428\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Polymer Analysis and Characterization","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1023666X24000428","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了短玻璃纤维(GF)对 60/40 wt%聚酰胺 6/ 聚酰胺 12(PA6/PA12)混合物性能的影响。短纤维增强复合材料是通过双螺杆挤出机熔融共混和注塑成型制成的。对复合材料的形态、吸水性、流变学、热力学和机械性能进行了讨论。形态观察结果表明,PA6/PA12 共混物呈现出兼容形态,纤维与基体之间的粘附力也相当强。由于这些形态学发现,在添加 GF 增强材料后,共混物的拉伸强度/模量和存储模量得到了大幅提高。与 PA12 共混后,纯 PA6 的吸水率明显降低,而 GF 的加入则进一步降低了 PA6/PA12 共混物的吸水率。热力学分析表明,复合材料的刚度提高了,玻璃化转变温度也提高了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fabrication and performance of short glass fiber reinforced polyamide composites
This article deals with the impact of short glass fiber (GF) on the performance of 60/40 wt% of polyamide 6/polyamide 12 (PA6/PA12) blend. The short fiber-reinforced composites were fabricated by using melt compounding via twin screw extruder and injection molding. The morphological, water uptake, rheological, thermo-mechanical, and mechanical properties of the composites were discussed. The morphological observations show that the PA6/PA12 blend exhibited compatible morphology and also adhesion between the fiber and matrix was quite strong. The tensile strength/modulus and storage modulus of the blend were substantially improved with GF reinforcement as a result of these morphological findings. While the water uptake of neat PA6 decreased significantly after blending with PA12, the incorporation of GF further reduced the water uptake of the PA6/PA12 blend. The thermomechanical analysis showed the enhancement of the stiffness of the composites and also glass transition temperature increment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
5.30%
发文量
37
审稿时长
1.6 months
期刊介绍: The scope of the journal is to publish original contributions and reviews on studies, methodologies, instrumentation, and applications involving the analysis and characterization of polymers and polymeric-based materials, including synthetic polymers, blends, composites, fibers, coatings, supramolecular structures, polysaccharides, and biopolymers. The Journal will accept papers and review articles on the following topics and research areas involving fundamental and applied studies of polymer analysis and characterization: Characterization and analysis of new and existing polymers and polymeric-based materials. Design and evaluation of analytical instrumentation and physical testing equipment. Determination of molecular weight, size, conformation, branching, cross-linking, chemical structure, and sequence distribution. Using separation, spectroscopic, and scattering techniques. Surface characterization of polymeric materials. Measurement of solution and bulk properties and behavior of polymers. Studies involving structure-property-processing relationships, and polymer aging. Analysis of oligomeric materials. Analysis of polymer additives and decomposition products.
期刊最新文献
Synthesis, rheological and thermal studies of Gum ghatti-cl-poly(acrylic acid) hydrogels containing CoFe2O4 nanoparticles Preparation and characterization of fumed silica added PMMA denture base materials High-performance biodegradable triboelectric nanogenerators using CoFe2O4 filled poly (butylene adipate-co-terephthalate) Optimization of Yucca filamentosa fiber based graft copolymer through response surface methodology and evaluation of physico-chemical properties Mechanical, Thermal, and Water Absorption Behavior of Ash Gourd (Benincasa Hispida) Peel Particles Filled Epoxy Composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1