用于结构电池中碳纤维阳极的室温离子液体电解质

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES Composites Science and Technology Pub Date : 2024-11-03 DOI:10.1016/j.compscitech.2024.110952
Lakshmi Surag Singavarapu , Paul Gilmore , Jun Wei Yap , Yehia Khalifa , Umesh Gandhi , Timothy S. Arthur , Jay Sayre , Jung-Hyun Kim
{"title":"用于结构电池中碳纤维阳极的室温离子液体电解质","authors":"Lakshmi Surag Singavarapu ,&nbsp;Paul Gilmore ,&nbsp;Jun Wei Yap ,&nbsp;Yehia Khalifa ,&nbsp;Umesh Gandhi ,&nbsp;Timothy S. Arthur ,&nbsp;Jay Sayre ,&nbsp;Jung-Hyun Kim","doi":"10.1016/j.compscitech.2024.110952","DOIUrl":null,"url":null,"abstract":"<div><div>Structural batteries require thermally stable electrolytes paired with carbon fibers (CFs), which offer advantages of lightweight, high mechanical strength, and good electrical conductivity. This work evaluated various room-temperature ionic-liquids (RTILs) as compatible electrolytes for CF anodes and LiFePO<sub>4</sub> (LFP) cathodes on CFs. This LFP/CF full-cell design eliminates Cu and Al current-collectors, potentially enhancing gravimetric energy and reducing costs. Among various RTILs, LiTFSI in N-propyl-N-methylpyrrolidinium (PYR13) – bis(fluorosulfonyl)imide (FSI) offered promising LFP/CF full-cell performances, attributed to the formation of solid electrolyte interphase (SEI) layer on the CF anode with components such as Li<sub>2</sub>S<sub>x</sub>, Li<sub>2</sub>S–SO<sub>3</sub>, LiF, Li<sub>x</sub>F<sub>y</sub> and F–SO<sub>2</sub>, identified through X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Electrochemical impedance spectroscopy (EIS) and distribution of relaxation times (DRT) analyses further confirmed the electrochemical stability of the SEI layer on CF anodes. The LFP/CF cell delivered an initial capacity of 119 mAh/g and relatively high Coulombic efficiency when using the 1 M LiTFSI in PYR13-FSI. CF cycled in different electrolytes exhibit varying mechanical properties with up to 10.08 % loss in tensile strength, which may be related to CF surface degradation during cycling. The 1 M LiTFSI in PYR13-FSI is non-flammable, offering a significant thermal safety. This work successfully demonstrated the significant potential of 1 M LiTFSI in PYR13-FSI RTILs, which enables the use of CF as both an anode active material and cathode current collector for structural battery applications.</div></div>","PeriodicalId":283,"journal":{"name":"Composites Science and Technology","volume":"259 ","pages":"Article 110952"},"PeriodicalIF":8.3000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Room-temperature ionic liquid electrolytes for carbon fiber anodes in structural batteries\",\"authors\":\"Lakshmi Surag Singavarapu ,&nbsp;Paul Gilmore ,&nbsp;Jun Wei Yap ,&nbsp;Yehia Khalifa ,&nbsp;Umesh Gandhi ,&nbsp;Timothy S. Arthur ,&nbsp;Jay Sayre ,&nbsp;Jung-Hyun Kim\",\"doi\":\"10.1016/j.compscitech.2024.110952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Structural batteries require thermally stable electrolytes paired with carbon fibers (CFs), which offer advantages of lightweight, high mechanical strength, and good electrical conductivity. This work evaluated various room-temperature ionic-liquids (RTILs) as compatible electrolytes for CF anodes and LiFePO<sub>4</sub> (LFP) cathodes on CFs. This LFP/CF full-cell design eliminates Cu and Al current-collectors, potentially enhancing gravimetric energy and reducing costs. Among various RTILs, LiTFSI in N-propyl-N-methylpyrrolidinium (PYR13) – bis(fluorosulfonyl)imide (FSI) offered promising LFP/CF full-cell performances, attributed to the formation of solid electrolyte interphase (SEI) layer on the CF anode with components such as Li<sub>2</sub>S<sub>x</sub>, Li<sub>2</sub>S–SO<sub>3</sub>, LiF, Li<sub>x</sub>F<sub>y</sub> and F–SO<sub>2</sub>, identified through X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Electrochemical impedance spectroscopy (EIS) and distribution of relaxation times (DRT) analyses further confirmed the electrochemical stability of the SEI layer on CF anodes. The LFP/CF cell delivered an initial capacity of 119 mAh/g and relatively high Coulombic efficiency when using the 1 M LiTFSI in PYR13-FSI. CF cycled in different electrolytes exhibit varying mechanical properties with up to 10.08 % loss in tensile strength, which may be related to CF surface degradation during cycling. The 1 M LiTFSI in PYR13-FSI is non-flammable, offering a significant thermal safety. This work successfully demonstrated the significant potential of 1 M LiTFSI in PYR13-FSI RTILs, which enables the use of CF as both an anode active material and cathode current collector for structural battery applications.</div></div>\",\"PeriodicalId\":283,\"journal\":{\"name\":\"Composites Science and Technology\",\"volume\":\"259 \",\"pages\":\"Article 110952\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266353824005220\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266353824005220","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

结构电池需要与碳纤维(CF)配对的热稳定电解质,碳纤维具有重量轻、机械强度高和导电性好等优点。这项研究评估了各种室温离子液体(RTIL)作为 CF 阳极和 CF 上磷酸铁锂(LFP)阴极的兼容电解质。这种 LFP/CF 全电池设计消除了铜和铝集流器,有可能提高重力能量并降低成本。在各种 RTIL 中,N-丙基-N-甲基吡咯烷铵(PYR13)-双(氟磺酰)亚胺(FSI)中的 LiTFSI 具有良好的 LFP/CF 全电池性能、通过 X 射线光电子能谱 (XPS) 和扫描电子显微镜 (SEM),可以确定 CF 阳极上形成了固体电解质相间层 (SEI),其中含有 Li2Sx、Li2S-SO3、LiF、LixFy 和 F-SO2 等成分。电化学阻抗光谱(EIS)和弛豫时间分布(DRT)分析进一步证实了 CF 阳极 SEI 层的电化学稳定性。在PYR13-FSI 中使用 1 M LiTFSI 时,LFP/CF 电池的初始容量为 119 mAh/g,库仑效率相对较高。在不同电解质中循环使用的 CF 显示出不同的机械性能,拉伸强度损失高达 10.08%,这可能与循环过程中 CF 表面降解有关。PYR13-FSI中的1 M LiTFSI是不可燃的,具有显著的热安全性。这项研究成功证明了PYR13-FSI RTIL 中 1 M LiTFSI 的巨大潜力,这使得 CF 既可用作结构电池应用的阳极活性材料,也可用作阴极集流器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Room-temperature ionic liquid electrolytes for carbon fiber anodes in structural batteries
Structural batteries require thermally stable electrolytes paired with carbon fibers (CFs), which offer advantages of lightweight, high mechanical strength, and good electrical conductivity. This work evaluated various room-temperature ionic-liquids (RTILs) as compatible electrolytes for CF anodes and LiFePO4 (LFP) cathodes on CFs. This LFP/CF full-cell design eliminates Cu and Al current-collectors, potentially enhancing gravimetric energy and reducing costs. Among various RTILs, LiTFSI in N-propyl-N-methylpyrrolidinium (PYR13) – bis(fluorosulfonyl)imide (FSI) offered promising LFP/CF full-cell performances, attributed to the formation of solid electrolyte interphase (SEI) layer on the CF anode with components such as Li2Sx, Li2S–SO3, LiF, LixFy and F–SO2, identified through X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Electrochemical impedance spectroscopy (EIS) and distribution of relaxation times (DRT) analyses further confirmed the electrochemical stability of the SEI layer on CF anodes. The LFP/CF cell delivered an initial capacity of 119 mAh/g and relatively high Coulombic efficiency when using the 1 M LiTFSI in PYR13-FSI. CF cycled in different electrolytes exhibit varying mechanical properties with up to 10.08 % loss in tensile strength, which may be related to CF surface degradation during cycling. The 1 M LiTFSI in PYR13-FSI is non-flammable, offering a significant thermal safety. This work successfully demonstrated the significant potential of 1 M LiTFSI in PYR13-FSI RTILs, which enables the use of CF as both an anode active material and cathode current collector for structural battery applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Composites Science and Technology
Composites Science and Technology 工程技术-材料科学:复合
CiteScore
16.20
自引率
9.90%
发文量
611
审稿时长
33 days
期刊介绍: Composites Science and Technology publishes refereed original articles on the fundamental and applied science of engineering composites. The focus of this journal is on polymeric matrix composites with reinforcements/fillers ranging from nano- to macro-scale. CSTE encourages manuscripts reporting unique, innovative contributions to the physics, chemistry, materials science and applied mechanics aspects of advanced composites. Besides traditional fiber reinforced composites, novel composites with significant potential for engineering applications are encouraged.
期刊最新文献
Egg white-derived nanocomposite microspheres for alveolar bone defects management Dual covalent bond induced high thermally conductive polyimide composite films based on CNT@CN complex filler Anti-interference flexible temperature-sensitive/strain-sensing aerogel fiber for cooperative monitoring of human body temperature and movement information Symmetric sandwich–like rubber composites for “green” electromagnetic interference shielding and thermal insulation Concurrent optimization of continuous carbon fiber-reinforced composites with multi-scale components considering the manufacturing constraint
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1