{"title":"选择性加权最小二乘法和片断双线性变换用于精确生成卫星 DSM","authors":"Nazila Mohammadi, Amin Sedaghat","doi":"10.1016/j.isprsjprs.2024.11.001","DOIUrl":null,"url":null,"abstract":"<div><div>One of the main products of multi-view stereo (MVS) high-resolution satellite (HRS) images in photogrammetry and remote sensing is digital surface model (DSM). Producing DSMs from MVS HRS images still faces serious challenges due to various reasons such as complexity of imaging geometry and exterior orientation model in HRS, as well as large dimensions and various geometric and illumination variations. The main motivation for conducting this research is to provide a novel and efficient method that enhances the accuracy and completeness of extracting DSM from HRS images compared to existing recent methods. The proposed method called Sat-DSM, consists of five main stages. Initially, a very dense set of tie-points is extracted from the images using a tile-based matching method, phase congruency-based feature detectors and descriptors, and a local geometric consistency correspondence method. Then, the process of Rational Polynomial Coefficients (RPC) block adjustment is performed to compensate the RPC bias errors. After that, a dense matching process is performed to generate 3D point clouds for each pair of input HRS images using a new geometric transformation called PWB (pricewise bilinear) and an accurate area-based matching method called SWLSM (selective weighted least square matching). The key innovations of this research include the introduction of SWLSM and PWB methods for an accurate dense matching process. The PWB is a novel and simple piecewise geometric transformation model based on superpixel over-segmentation that has been proposed for accurate registration of each pair of HRS images. The SWLSM matching method is based on phase congruency measure and a selection strategy to improve the well-known LSM (least square matching) performance. After dense matching process, the final stage is spatial intersection to generate 3D point clouds, followed by elevation interpolation to produce DSM. To evaluate the Sat-DSM method, 12 sets of MVS-HRS data from IRS-P5, ZY3-1, ZY3-2, and Worldview-3 sensors were selected from areas with different landscapes such as urban, mountainous, and agricultural areas. The results indicate the superiority of the proposed Sat-DSM method over four other methods CATALYST, SGM (Semi-global matching), SS-DSM (structural similarity based DSM extraction), and Sat-MVSF in terms of completeness, RMSE, and MEE. The demo code is available at <span><span>https://www.researchgate.net/publication/377721674_SatDSM</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"218 ","pages":"Pages 214-230"},"PeriodicalIF":10.6000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Selective weighted least square and piecewise bilinear transformation for accurate satellite DSM generation\",\"authors\":\"Nazila Mohammadi, Amin Sedaghat\",\"doi\":\"10.1016/j.isprsjprs.2024.11.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>One of the main products of multi-view stereo (MVS) high-resolution satellite (HRS) images in photogrammetry and remote sensing is digital surface model (DSM). Producing DSMs from MVS HRS images still faces serious challenges due to various reasons such as complexity of imaging geometry and exterior orientation model in HRS, as well as large dimensions and various geometric and illumination variations. The main motivation for conducting this research is to provide a novel and efficient method that enhances the accuracy and completeness of extracting DSM from HRS images compared to existing recent methods. The proposed method called Sat-DSM, consists of five main stages. Initially, a very dense set of tie-points is extracted from the images using a tile-based matching method, phase congruency-based feature detectors and descriptors, and a local geometric consistency correspondence method. Then, the process of Rational Polynomial Coefficients (RPC) block adjustment is performed to compensate the RPC bias errors. After that, a dense matching process is performed to generate 3D point clouds for each pair of input HRS images using a new geometric transformation called PWB (pricewise bilinear) and an accurate area-based matching method called SWLSM (selective weighted least square matching). The key innovations of this research include the introduction of SWLSM and PWB methods for an accurate dense matching process. The PWB is a novel and simple piecewise geometric transformation model based on superpixel over-segmentation that has been proposed for accurate registration of each pair of HRS images. The SWLSM matching method is based on phase congruency measure and a selection strategy to improve the well-known LSM (least square matching) performance. After dense matching process, the final stage is spatial intersection to generate 3D point clouds, followed by elevation interpolation to produce DSM. To evaluate the Sat-DSM method, 12 sets of MVS-HRS data from IRS-P5, ZY3-1, ZY3-2, and Worldview-3 sensors were selected from areas with different landscapes such as urban, mountainous, and agricultural areas. The results indicate the superiority of the proposed Sat-DSM method over four other methods CATALYST, SGM (Semi-global matching), SS-DSM (structural similarity based DSM extraction), and Sat-MVSF in terms of completeness, RMSE, and MEE. The demo code is available at <span><span>https://www.researchgate.net/publication/377721674_SatDSM</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":50269,\"journal\":{\"name\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"volume\":\"218 \",\"pages\":\"Pages 214-230\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S092427162400409X\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092427162400409X","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
Selective weighted least square and piecewise bilinear transformation for accurate satellite DSM generation
One of the main products of multi-view stereo (MVS) high-resolution satellite (HRS) images in photogrammetry and remote sensing is digital surface model (DSM). Producing DSMs from MVS HRS images still faces serious challenges due to various reasons such as complexity of imaging geometry and exterior orientation model in HRS, as well as large dimensions and various geometric and illumination variations. The main motivation for conducting this research is to provide a novel and efficient method that enhances the accuracy and completeness of extracting DSM from HRS images compared to existing recent methods. The proposed method called Sat-DSM, consists of five main stages. Initially, a very dense set of tie-points is extracted from the images using a tile-based matching method, phase congruency-based feature detectors and descriptors, and a local geometric consistency correspondence method. Then, the process of Rational Polynomial Coefficients (RPC) block adjustment is performed to compensate the RPC bias errors. After that, a dense matching process is performed to generate 3D point clouds for each pair of input HRS images using a new geometric transformation called PWB (pricewise bilinear) and an accurate area-based matching method called SWLSM (selective weighted least square matching). The key innovations of this research include the introduction of SWLSM and PWB methods for an accurate dense matching process. The PWB is a novel and simple piecewise geometric transformation model based on superpixel over-segmentation that has been proposed for accurate registration of each pair of HRS images. The SWLSM matching method is based on phase congruency measure and a selection strategy to improve the well-known LSM (least square matching) performance. After dense matching process, the final stage is spatial intersection to generate 3D point clouds, followed by elevation interpolation to produce DSM. To evaluate the Sat-DSM method, 12 sets of MVS-HRS data from IRS-P5, ZY3-1, ZY3-2, and Worldview-3 sensors were selected from areas with different landscapes such as urban, mountainous, and agricultural areas. The results indicate the superiority of the proposed Sat-DSM method over four other methods CATALYST, SGM (Semi-global matching), SS-DSM (structural similarity based DSM extraction), and Sat-MVSF in terms of completeness, RMSE, and MEE. The demo code is available at https://www.researchgate.net/publication/377721674_SatDSM.
期刊介绍:
The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive.
P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields.
In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.