Chunguang Zhou , Christian Jonasson , Marcus Gullberg , Fredrik Ahrentorp , Christer Johansson
{"title":"循环流化床全循环系统充气立管和斜管中固体流动行为的测量与建模","authors":"Chunguang Zhou , Christian Jonasson , Marcus Gullberg , Fredrik Ahrentorp , Christer Johansson","doi":"10.1016/j.powtec.2024.120414","DOIUrl":null,"url":null,"abstract":"<div><div>To control solids circulation and optimize design and operating parameters in a circulating fluidized bed full-loop system<strong>,</strong> measurement and modeling of solids flow behaviors in an aerated standpipe and inclined pipe were conducted. Different aeration gas flows were injected at the inclined pipe, which was equipped with different orifice sizes of 37 mm, 54 mm and 75 mm, for regulating solids flow rates. The magnetic tracer-tracking method, which only needs to inject one small magnetic tracer for each measurement to follow the main solids flow, was successfully demonstrated for measuring sand particles' real-time discharge rates, with good accuracy and no calibration requirement. A mathematical model was constructed to predict solids discharge rates and investigate the adverse effect of the pressure gradient in the standpipe bed in a full loop fluidized bed system. The optimization of the solids-return and circulation unit could therefore be achieved with the tools developed in this study.</div></div>","PeriodicalId":407,"journal":{"name":"Powder Technology","volume":"449 ","pages":"Article 120414"},"PeriodicalIF":4.5000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measurement and modeling of solids flow behaviors in an aerated standpipe and inclined pipe of circulating fluidized bed full-loop system\",\"authors\":\"Chunguang Zhou , Christian Jonasson , Marcus Gullberg , Fredrik Ahrentorp , Christer Johansson\",\"doi\":\"10.1016/j.powtec.2024.120414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To control solids circulation and optimize design and operating parameters in a circulating fluidized bed full-loop system<strong>,</strong> measurement and modeling of solids flow behaviors in an aerated standpipe and inclined pipe were conducted. Different aeration gas flows were injected at the inclined pipe, which was equipped with different orifice sizes of 37 mm, 54 mm and 75 mm, for regulating solids flow rates. The magnetic tracer-tracking method, which only needs to inject one small magnetic tracer for each measurement to follow the main solids flow, was successfully demonstrated for measuring sand particles' real-time discharge rates, with good accuracy and no calibration requirement. A mathematical model was constructed to predict solids discharge rates and investigate the adverse effect of the pressure gradient in the standpipe bed in a full loop fluidized bed system. The optimization of the solids-return and circulation unit could therefore be achieved with the tools developed in this study.</div></div>\",\"PeriodicalId\":407,\"journal\":{\"name\":\"Powder Technology\",\"volume\":\"449 \",\"pages\":\"Article 120414\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Powder Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0032591024010581\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032591024010581","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Measurement and modeling of solids flow behaviors in an aerated standpipe and inclined pipe of circulating fluidized bed full-loop system
To control solids circulation and optimize design and operating parameters in a circulating fluidized bed full-loop system, measurement and modeling of solids flow behaviors in an aerated standpipe and inclined pipe were conducted. Different aeration gas flows were injected at the inclined pipe, which was equipped with different orifice sizes of 37 mm, 54 mm and 75 mm, for regulating solids flow rates. The magnetic tracer-tracking method, which only needs to inject one small magnetic tracer for each measurement to follow the main solids flow, was successfully demonstrated for measuring sand particles' real-time discharge rates, with good accuracy and no calibration requirement. A mathematical model was constructed to predict solids discharge rates and investigate the adverse effect of the pressure gradient in the standpipe bed in a full loop fluidized bed system. The optimization of the solids-return and circulation unit could therefore be achieved with the tools developed in this study.
期刊介绍:
Powder Technology is an International Journal on the Science and Technology of Wet and Dry Particulate Systems. Powder Technology publishes papers on all aspects of the formation of particles and their characterisation and on the study of systems containing particulate solids. No limitation is imposed on the size of the particles, which may range from nanometre scale, as in pigments or aerosols, to that of mined or quarried materials. The following list of topics is not intended to be comprehensive, but rather to indicate typical subjects which fall within the scope of the journal's interests:
Formation and synthesis of particles by precipitation and other methods.
Modification of particles by agglomeration, coating, comminution and attrition.
Characterisation of the size, shape, surface area, pore structure and strength of particles and agglomerates (including the origins and effects of inter particle forces).
Packing, failure, flow and permeability of assemblies of particles.
Particle-particle interactions and suspension rheology.
Handling and processing operations such as slurry flow, fluidization, pneumatic conveying.
Interactions between particles and their environment, including delivery of particulate products to the body.
Applications of particle technology in production of pharmaceuticals, chemicals, foods, pigments, structural, and functional materials and in environmental and energy related matters.
For materials-oriented contributions we are looking for articles revealing the effect of particle/powder characteristics (size, morphology and composition, in that order) on material performance or functionality and, ideally, comparison to any industrial standard.