{"title":"禽多杀性巴氏杆菌通过抑制 Zyxin-FAK-AKT-FoxO1/NF-κB 轴诱导鸡巨噬细胞凋亡","authors":"","doi":"10.1016/j.psj.2024.104504","DOIUrl":null,"url":null,"abstract":"<div><div><em>Pasteurella multocida</em> (<em>P. multocida</em>) can cause infection in various animals, especially livestock and poultry, which can lead to substantial losses to the breeding industry. However, the pathogenesis of avian <em>P. multocida</em> remains largely unknown. In this study, the mechanisms of avian <em>P. multocida</em> pathogenesis were explored. Chicken macrophage HD11 cells were infected with the avian strain PmQ and the bovine strain PmCQ2. PmQ induced higher cytotoxicity and apoptosis and exerted a stronger anti-phagocytotic effect on HD11 cells than PmCQ2. RNA sequencing analysis revealed that focal adhesion (FA)-related genes were significantly downregulated in PmQ-infected HD11 cells compared with that of PmCQ2. Subsequently, phalloidin staining of the F-actin assembly revealed that PmQ more significantly inhibited the formation of FAs in HD11 than PmCQ2. Western blot analysis revealed that the levels of Zyxin and phosphorylated focal adhesion kinase (FAK) were significantly decreased in PmQ-infected cells, confirming that PmQ inhibited FAs. Consequently, PmQ inhibited the FA downstream factor Akt, which decreased NF-κB and FoxO1 phosphorylation, as evidenced by the decreased expression of downstream anti-apoptotic genes (<em>GADD45B, BCL2L1, BCL2A1</em>, and <em>BIRC2</em>) and increased expression of downstream pro-apoptotic genes (<em>BCL6, PKL2, PKL3,</em> and <em>KLF2</em>). Conversely, pharmaceutically inhibiting FA formation using latrunculin A better enhanced PmCQ2-induced than PmQ-induced apoptosis in HD11 cells. Similarly, the knockdown of Zyxin or FoxO1 by siRNA both boosted the PmCQ2-induced apoptosis rates equal to those of PmQ. These results demonstrated that PmQ inhibited Zyxin-dependent FA formation and disrupted the FAK-AKT-FoxO1/NF-κB pathway to induce apoptosis in chicken macrophages. This study thus offers insights into the pathogenesis of avian <em>P. multocida</em>, which could facilitate the development of new strategies against <em>P. multocida</em> infection.</div></div>","PeriodicalId":20459,"journal":{"name":"Poultry Science","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Avian Pasteurella multocida induces chicken macrophage apoptosis by inhibiting the Zyxin-FAK-AKT-FoxO1/NF-κB axis\",\"authors\":\"\",\"doi\":\"10.1016/j.psj.2024.104504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><em>Pasteurella multocida</em> (<em>P. multocida</em>) can cause infection in various animals, especially livestock and poultry, which can lead to substantial losses to the breeding industry. However, the pathogenesis of avian <em>P. multocida</em> remains largely unknown. In this study, the mechanisms of avian <em>P. multocida</em> pathogenesis were explored. Chicken macrophage HD11 cells were infected with the avian strain PmQ and the bovine strain PmCQ2. PmQ induced higher cytotoxicity and apoptosis and exerted a stronger anti-phagocytotic effect on HD11 cells than PmCQ2. RNA sequencing analysis revealed that focal adhesion (FA)-related genes were significantly downregulated in PmQ-infected HD11 cells compared with that of PmCQ2. Subsequently, phalloidin staining of the F-actin assembly revealed that PmQ more significantly inhibited the formation of FAs in HD11 than PmCQ2. Western blot analysis revealed that the levels of Zyxin and phosphorylated focal adhesion kinase (FAK) were significantly decreased in PmQ-infected cells, confirming that PmQ inhibited FAs. Consequently, PmQ inhibited the FA downstream factor Akt, which decreased NF-κB and FoxO1 phosphorylation, as evidenced by the decreased expression of downstream anti-apoptotic genes (<em>GADD45B, BCL2L1, BCL2A1</em>, and <em>BIRC2</em>) and increased expression of downstream pro-apoptotic genes (<em>BCL6, PKL2, PKL3,</em> and <em>KLF2</em>). Conversely, pharmaceutically inhibiting FA formation using latrunculin A better enhanced PmCQ2-induced than PmQ-induced apoptosis in HD11 cells. Similarly, the knockdown of Zyxin or FoxO1 by siRNA both boosted the PmCQ2-induced apoptosis rates equal to those of PmQ. These results demonstrated that PmQ inhibited Zyxin-dependent FA formation and disrupted the FAK-AKT-FoxO1/NF-κB pathway to induce apoptosis in chicken macrophages. This study thus offers insights into the pathogenesis of avian <em>P. multocida</em>, which could facilitate the development of new strategies against <em>P. multocida</em> infection.</div></div>\",\"PeriodicalId\":20459,\"journal\":{\"name\":\"Poultry Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Poultry Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0032579124010824\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Poultry Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032579124010824","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
Avian Pasteurella multocida induces chicken macrophage apoptosis by inhibiting the Zyxin-FAK-AKT-FoxO1/NF-κB axis
Pasteurella multocida (P. multocida) can cause infection in various animals, especially livestock and poultry, which can lead to substantial losses to the breeding industry. However, the pathogenesis of avian P. multocida remains largely unknown. In this study, the mechanisms of avian P. multocida pathogenesis were explored. Chicken macrophage HD11 cells were infected with the avian strain PmQ and the bovine strain PmCQ2. PmQ induced higher cytotoxicity and apoptosis and exerted a stronger anti-phagocytotic effect on HD11 cells than PmCQ2. RNA sequencing analysis revealed that focal adhesion (FA)-related genes were significantly downregulated in PmQ-infected HD11 cells compared with that of PmCQ2. Subsequently, phalloidin staining of the F-actin assembly revealed that PmQ more significantly inhibited the formation of FAs in HD11 than PmCQ2. Western blot analysis revealed that the levels of Zyxin and phosphorylated focal adhesion kinase (FAK) were significantly decreased in PmQ-infected cells, confirming that PmQ inhibited FAs. Consequently, PmQ inhibited the FA downstream factor Akt, which decreased NF-κB and FoxO1 phosphorylation, as evidenced by the decreased expression of downstream anti-apoptotic genes (GADD45B, BCL2L1, BCL2A1, and BIRC2) and increased expression of downstream pro-apoptotic genes (BCL6, PKL2, PKL3, and KLF2). Conversely, pharmaceutically inhibiting FA formation using latrunculin A better enhanced PmCQ2-induced than PmQ-induced apoptosis in HD11 cells. Similarly, the knockdown of Zyxin or FoxO1 by siRNA both boosted the PmCQ2-induced apoptosis rates equal to those of PmQ. These results demonstrated that PmQ inhibited Zyxin-dependent FA formation and disrupted the FAK-AKT-FoxO1/NF-κB pathway to induce apoptosis in chicken macrophages. This study thus offers insights into the pathogenesis of avian P. multocida, which could facilitate the development of new strategies against P. multocida infection.
期刊介绍:
First self-published in 1921, Poultry Science is an internationally renowned monthly journal, known as the authoritative source for a broad range of poultry information and high-caliber research. The journal plays a pivotal role in the dissemination of preeminent poultry-related knowledge across all disciplines. As of January 2020, Poultry Science will become an Open Access journal with no subscription charges, meaning authors who publish here can make their research immediately, permanently, and freely accessible worldwide while retaining copyright to their work. Papers submitted for publication after October 1, 2019 will be published as Open Access papers.
An international journal, Poultry Science publishes original papers, research notes, symposium papers, and reviews of basic science as applied to poultry. This authoritative source of poultry information is consistently ranked by ISI Impact Factor as one of the top 10 agriculture, dairy and animal science journals to deliver high-caliber research. Currently it is the highest-ranked (by Impact Factor and Eigenfactor) journal dedicated to publishing poultry research. Subject areas include breeding, genetics, education, production, management, environment, health, behavior, welfare, immunology, molecular biology, metabolism, nutrition, physiology, reproduction, processing, and products.