用于移动机器人行为决策的小脑监督学习和基底神经节强化学习综合模型

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-10-30 DOI:10.1016/j.cogsys.2024.101302
Zhiqiang Wu , Dongshu Wang , Lei Liu
{"title":"用于移动机器人行为决策的小脑监督学习和基底神经节强化学习综合模型","authors":"Zhiqiang Wu ,&nbsp;Dongshu Wang ,&nbsp;Lei Liu","doi":"10.1016/j.cogsys.2024.101302","DOIUrl":null,"url":null,"abstract":"<div><div>Behavioral decision-making in unknown environments of mobile robots is a crucial research topic in robotics. Inspired by the working mechanism of different brain regions in mammals, this paper designed a new hybrid model integrating the functions of cerebellum and basal ganglia by simulating the memory replay of hippocampus, so as to realize the autonomous behavioral decision-making of robot in unknown environments. A reinforcement learning module based on Actor-Critic framework and a developmental network module are used to simulate the functions of the basal ganglia and cerebellum, respectively. Considering the different functions of D1 and D2 dopamine receptors in basal ganglia, an Actor network module with separate learning of positive and negative rewards is designed for the basal ganglia to realize efficient exploration of the environments by the agent. According to the characteristics of biological memory, a physiological memory priority index is designed for hippocampus memory replay, which improves the offline learning efficiency of cerebellum. The integrated model enables dynamic switching between decisions made by cerebellum and basal ganglia based on the agent’s cognitive level with respect to the environment. Finally, the effectiveness of the proposed model is verified through experiments on agent navigation in both simulation and real environments, as well as through performance comparison experiments with other learning algorithms.</div></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated model of cerebellal supervised learning and basal ganglia’s reinforcement learning for mobile robot behavioral decision-making\",\"authors\":\"Zhiqiang Wu ,&nbsp;Dongshu Wang ,&nbsp;Lei Liu\",\"doi\":\"10.1016/j.cogsys.2024.101302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Behavioral decision-making in unknown environments of mobile robots is a crucial research topic in robotics. Inspired by the working mechanism of different brain regions in mammals, this paper designed a new hybrid model integrating the functions of cerebellum and basal ganglia by simulating the memory replay of hippocampus, so as to realize the autonomous behavioral decision-making of robot in unknown environments. A reinforcement learning module based on Actor-Critic framework and a developmental network module are used to simulate the functions of the basal ganglia and cerebellum, respectively. Considering the different functions of D1 and D2 dopamine receptors in basal ganglia, an Actor network module with separate learning of positive and negative rewards is designed for the basal ganglia to realize efficient exploration of the environments by the agent. According to the characteristics of biological memory, a physiological memory priority index is designed for hippocampus memory replay, which improves the offline learning efficiency of cerebellum. The integrated model enables dynamic switching between decisions made by cerebellum and basal ganglia based on the agent’s cognitive level with respect to the environment. Finally, the effectiveness of the proposed model is verified through experiments on agent navigation in both simulation and real environments, as well as through performance comparison experiments with other learning algorithms.</div></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1389041724000962\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389041724000962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

移动机器人在未知环境中的行为决策是机器人学的一个重要研究课题。受哺乳动物不同脑区工作机制的启发,本文通过模拟海马的记忆重放,设计了一种整合小脑和基底节功能的新型混合模型,以实现机器人在未知环境中的自主行为决策。基于 Actor-Critic 框架的强化学习模块和发育网络模块分别用于模拟基底节和小脑的功能。考虑到基底节中多巴胺受体 D1 和 D2 的不同功能,为基底节设计了分别学习正负奖励的 Actor 网络模块,以实现机器人对环境的高效探索。根据生物记忆的特点,为海马记忆重放设计了生理记忆优先级指标,提高了小脑的离线学习效率。综合模型可根据代理对环境的认知水平,实现小脑和基底神经节决策的动态切换。最后,通过在模拟和真实环境中进行的代理导航实验,以及与其他学习算法的性能对比实验,验证了所提模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integrated model of cerebellal supervised learning and basal ganglia’s reinforcement learning for mobile robot behavioral decision-making
Behavioral decision-making in unknown environments of mobile robots is a crucial research topic in robotics. Inspired by the working mechanism of different brain regions in mammals, this paper designed a new hybrid model integrating the functions of cerebellum and basal ganglia by simulating the memory replay of hippocampus, so as to realize the autonomous behavioral decision-making of robot in unknown environments. A reinforcement learning module based on Actor-Critic framework and a developmental network module are used to simulate the functions of the basal ganglia and cerebellum, respectively. Considering the different functions of D1 and D2 dopamine receptors in basal ganglia, an Actor network module with separate learning of positive and negative rewards is designed for the basal ganglia to realize efficient exploration of the environments by the agent. According to the characteristics of biological memory, a physiological memory priority index is designed for hippocampus memory replay, which improves the offline learning efficiency of cerebellum. The integrated model enables dynamic switching between decisions made by cerebellum and basal ganglia based on the agent’s cognitive level with respect to the environment. Finally, the effectiveness of the proposed model is verified through experiments on agent navigation in both simulation and real environments, as well as through performance comparison experiments with other learning algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1