{"title":"用深度学习和 MCMC 方法全面分析 f(Q) 引力下的观测宇宙学","authors":"L.K. Sharma , S. Parekh , A.K. Yadav , N. Goyal","doi":"10.1016/j.ascom.2024.100892","DOIUrl":null,"url":null,"abstract":"<div><div>Our goal in this study is to build FRW cosmological models inside the <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span> theory of gravity framework by using Bayesian statistics and deep learning method. We investigate the universe’s accelerating behaviour for a specific version of the <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span> gravity model using a novel, straightforward parameterization of the Hubble parameter in the form <span><math><mrow><mi>H</mi><mo>=</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub><msup><mrow><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>z</mi><mo>)</mo></mrow></mrow><mrow><mn>1</mn><mo>+</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>−</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup><mi>e</mi><mi>x</mi><mi>p</mi><mrow><mo>(</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>z</mi><mo>)</mo></mrow></mrow></math></span>. The corresponding free parameters in <span><math><mrow><mi>H</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span> are limited between 1<span><math><mi>σ</mi></math></span> and 2<span><math><mi>σ</mi></math></span> confidence bounds using the <span><math><msup><mrow><mi>χ</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-minimization procedure. The results show that all the numbers we got are in the ballpark of what cosmological observations would predict. In our model, we examined the physical behaviour of the cosmos using characteristics such as energy density, pressure, and equation of state. We analysed kinematic factors including Hubble parameter, acceleration parameter, and universe age in our model. In our concept, the deceleration parameter <span><math><mrow><mi>q</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span> represents the universe’s transition from deceleration to acceleration. We employ a novel approach for parameter estimation by utilizing a mixed neural network (MNN) that combines artificial neural networks (ANN) and mixture density networks (MDN). This new methodology leverages the strengths of ANN, MDN, and MNN to enhance the accuracy of parameter estimation.</div></div>","PeriodicalId":48757,"journal":{"name":"Astronomy and Computing","volume":"49 ","pages":"Article 100892"},"PeriodicalIF":1.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comprehensive analysis of observational cosmology in f(Q) gravity with deep learning and MCMC method\",\"authors\":\"L.K. Sharma , S. Parekh , A.K. Yadav , N. Goyal\",\"doi\":\"10.1016/j.ascom.2024.100892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Our goal in this study is to build FRW cosmological models inside the <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span> theory of gravity framework by using Bayesian statistics and deep learning method. We investigate the universe’s accelerating behaviour for a specific version of the <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span> gravity model using a novel, straightforward parameterization of the Hubble parameter in the form <span><math><mrow><mi>H</mi><mo>=</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub><msup><mrow><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>z</mi><mo>)</mo></mrow></mrow><mrow><mn>1</mn><mo>+</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>−</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup><mi>e</mi><mi>x</mi><mi>p</mi><mrow><mo>(</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>z</mi><mo>)</mo></mrow></mrow></math></span>. The corresponding free parameters in <span><math><mrow><mi>H</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span> are limited between 1<span><math><mi>σ</mi></math></span> and 2<span><math><mi>σ</mi></math></span> confidence bounds using the <span><math><msup><mrow><mi>χ</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-minimization procedure. The results show that all the numbers we got are in the ballpark of what cosmological observations would predict. In our model, we examined the physical behaviour of the cosmos using characteristics such as energy density, pressure, and equation of state. We analysed kinematic factors including Hubble parameter, acceleration parameter, and universe age in our model. In our concept, the deceleration parameter <span><math><mrow><mi>q</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span> represents the universe’s transition from deceleration to acceleration. We employ a novel approach for parameter estimation by utilizing a mixed neural network (MNN) that combines artificial neural networks (ANN) and mixture density networks (MDN). This new methodology leverages the strengths of ANN, MDN, and MNN to enhance the accuracy of parameter estimation.</div></div>\",\"PeriodicalId\":48757,\"journal\":{\"name\":\"Astronomy and Computing\",\"volume\":\"49 \",\"pages\":\"Article 100892\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astronomy and Computing\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213133724001070\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy and Computing","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213133724001070","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
A comprehensive analysis of observational cosmology in f(Q) gravity with deep learning and MCMC method
Our goal in this study is to build FRW cosmological models inside the theory of gravity framework by using Bayesian statistics and deep learning method. We investigate the universe’s accelerating behaviour for a specific version of the gravity model using a novel, straightforward parameterization of the Hubble parameter in the form . The corresponding free parameters in are limited between 1 and 2 confidence bounds using the -minimization procedure. The results show that all the numbers we got are in the ballpark of what cosmological observations would predict. In our model, we examined the physical behaviour of the cosmos using characteristics such as energy density, pressure, and equation of state. We analysed kinematic factors including Hubble parameter, acceleration parameter, and universe age in our model. In our concept, the deceleration parameter represents the universe’s transition from deceleration to acceleration. We employ a novel approach for parameter estimation by utilizing a mixed neural network (MNN) that combines artificial neural networks (ANN) and mixture density networks (MDN). This new methodology leverages the strengths of ANN, MDN, and MNN to enhance the accuracy of parameter estimation.
Astronomy and ComputingASTRONOMY & ASTROPHYSICSCOMPUTER SCIENCE,-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.10
自引率
8.00%
发文量
67
期刊介绍:
Astronomy and Computing is a peer-reviewed journal that focuses on the broad area between astronomy, computer science and information technology. The journal aims to publish the work of scientists and (software) engineers in all aspects of astronomical computing, including the collection, analysis, reduction, visualisation, preservation and dissemination of data, and the development of astronomical software and simulations. The journal covers applications for academic computer science techniques to astronomy, as well as novel applications of information technologies within astronomy.