用深度学习和 MCMC 方法全面分析 f(Q) 引力下的观测宇宙学

IF 1.9 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Astronomy and Computing Pub Date : 2024-10-01 DOI:10.1016/j.ascom.2024.100892
L.K. Sharma , S. Parekh , A.K. Yadav , N. Goyal
{"title":"用深度学习和 MCMC 方法全面分析 f(Q) 引力下的观测宇宙学","authors":"L.K. Sharma ,&nbsp;S. Parekh ,&nbsp;A.K. Yadav ,&nbsp;N. Goyal","doi":"10.1016/j.ascom.2024.100892","DOIUrl":null,"url":null,"abstract":"<div><div>Our goal in this study is to build FRW cosmological models inside the <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span> theory of gravity framework by using Bayesian statistics and deep learning method. We investigate the universe’s accelerating behaviour for a specific version of the <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span> gravity model using a novel, straightforward parameterization of the Hubble parameter in the form <span><math><mrow><mi>H</mi><mo>=</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub><msup><mrow><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>z</mi><mo>)</mo></mrow></mrow><mrow><mn>1</mn><mo>+</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>−</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup><mi>e</mi><mi>x</mi><mi>p</mi><mrow><mo>(</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>z</mi><mo>)</mo></mrow></mrow></math></span>. The corresponding free parameters in <span><math><mrow><mi>H</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span> are limited between 1<span><math><mi>σ</mi></math></span> and 2<span><math><mi>σ</mi></math></span> confidence bounds using the <span><math><msup><mrow><mi>χ</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-minimization procedure. The results show that all the numbers we got are in the ballpark of what cosmological observations would predict. In our model, we examined the physical behaviour of the cosmos using characteristics such as energy density, pressure, and equation of state. We analysed kinematic factors including Hubble parameter, acceleration parameter, and universe age in our model. In our concept, the deceleration parameter <span><math><mrow><mi>q</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span> represents the universe’s transition from deceleration to acceleration. We employ a novel approach for parameter estimation by utilizing a mixed neural network (MNN) that combines artificial neural networks (ANN) and mixture density networks (MDN). This new methodology leverages the strengths of ANN, MDN, and MNN to enhance the accuracy of parameter estimation.</div></div>","PeriodicalId":48757,"journal":{"name":"Astronomy and Computing","volume":"49 ","pages":"Article 100892"},"PeriodicalIF":1.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comprehensive analysis of observational cosmology in f(Q) gravity with deep learning and MCMC method\",\"authors\":\"L.K. Sharma ,&nbsp;S. Parekh ,&nbsp;A.K. Yadav ,&nbsp;N. Goyal\",\"doi\":\"10.1016/j.ascom.2024.100892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Our goal in this study is to build FRW cosmological models inside the <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span> theory of gravity framework by using Bayesian statistics and deep learning method. We investigate the universe’s accelerating behaviour for a specific version of the <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span> gravity model using a novel, straightforward parameterization of the Hubble parameter in the form <span><math><mrow><mi>H</mi><mo>=</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub><msup><mrow><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>z</mi><mo>)</mo></mrow></mrow><mrow><mn>1</mn><mo>+</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>−</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup><mi>e</mi><mi>x</mi><mi>p</mi><mrow><mo>(</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>z</mi><mo>)</mo></mrow></mrow></math></span>. The corresponding free parameters in <span><math><mrow><mi>H</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span> are limited between 1<span><math><mi>σ</mi></math></span> and 2<span><math><mi>σ</mi></math></span> confidence bounds using the <span><math><msup><mrow><mi>χ</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-minimization procedure. The results show that all the numbers we got are in the ballpark of what cosmological observations would predict. In our model, we examined the physical behaviour of the cosmos using characteristics such as energy density, pressure, and equation of state. We analysed kinematic factors including Hubble parameter, acceleration parameter, and universe age in our model. In our concept, the deceleration parameter <span><math><mrow><mi>q</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span> represents the universe’s transition from deceleration to acceleration. We employ a novel approach for parameter estimation by utilizing a mixed neural network (MNN) that combines artificial neural networks (ANN) and mixture density networks (MDN). This new methodology leverages the strengths of ANN, MDN, and MNN to enhance the accuracy of parameter estimation.</div></div>\",\"PeriodicalId\":48757,\"journal\":{\"name\":\"Astronomy and Computing\",\"volume\":\"49 \",\"pages\":\"Article 100892\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astronomy and Computing\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213133724001070\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy and Computing","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213133724001070","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目标是利用贝叶斯统计和深度学习方法,在 f(Q) 引力理论框架内建立 FRW 宇宙学模型。我们使用一种新颖、直接的哈勃参数参数化形式 H=H0(1+z)1+q0-q1exp(q1z) 来研究特定版本的 f(Q) 引力模型的宇宙加速行为。利用 χ2 最小化程序将 H(z) 中相应的自由参数限制在 1σ 和 2σ 置信度之间。结果表明,我们得到的所有数字都与宇宙学观测所预测的相差无几。在我们的模型中,我们利用能量密度、压力和状态方程等特征研究了宇宙的物理行为。我们分析了模型中的哈勃参数、加速度参数和宇宙年龄等运动学因素。在我们的概念中,减速参数 q(z) 代表宇宙从减速到加速的过渡。我们利用混合神经网络(MNN)进行参数估计,这是一种结合了人工神经网络(ANN)和混合密度网络(MDN)的新方法。这种新方法充分利用了人工神经网络、MDN 和 MNN 的优势,提高了参数估计的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A comprehensive analysis of observational cosmology in f(Q) gravity with deep learning and MCMC method
Our goal in this study is to build FRW cosmological models inside the f(Q) theory of gravity framework by using Bayesian statistics and deep learning method. We investigate the universe’s accelerating behaviour for a specific version of the f(Q) gravity model using a novel, straightforward parameterization of the Hubble parameter in the form H=H0(1+z)1+q0q1exp(q1z). The corresponding free parameters in H(z) are limited between 1σ and 2σ confidence bounds using the χ2-minimization procedure. The results show that all the numbers we got are in the ballpark of what cosmological observations would predict. In our model, we examined the physical behaviour of the cosmos using characteristics such as energy density, pressure, and equation of state. We analysed kinematic factors including Hubble parameter, acceleration parameter, and universe age in our model. In our concept, the deceleration parameter q(z) represents the universe’s transition from deceleration to acceleration. We employ a novel approach for parameter estimation by utilizing a mixed neural network (MNN) that combines artificial neural networks (ANN) and mixture density networks (MDN). This new methodology leverages the strengths of ANN, MDN, and MNN to enhance the accuracy of parameter estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Astronomy and Computing
Astronomy and Computing ASTRONOMY & ASTROPHYSICSCOMPUTER SCIENCE,-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.10
自引率
8.00%
发文量
67
期刊介绍: Astronomy and Computing is a peer-reviewed journal that focuses on the broad area between astronomy, computer science and information technology. The journal aims to publish the work of scientists and (software) engineers in all aspects of astronomical computing, including the collection, analysis, reduction, visualisation, preservation and dissemination of data, and the development of astronomical software and simulations. The journal covers applications for academic computer science techniques to astronomy, as well as novel applications of information technologies within astronomy.
期刊最新文献
Photometric redshifts probability density estimation from recurrent neural networks in the DECam local volume exploration survey data release 2 Computation of bulk viscous pressure with observational constraints via scalar field in the General relativity and f(Q) gravity Temporal variation of atmospheric electric field in comparison with solar terrestrial activities during the 24th solar cycle Classifying the clouds of Venus using unsupervised machine learning Radio frequency interference identification using dual cross-attention and multi-scale feature fusing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1