{"title":"超声波处理对大豆分离蛋白-透明质酸复合物的结构和乳化特性及其负载虾青素乳液稳定性的影响","authors":"","doi":"10.1016/j.ijbiomac.2024.137284","DOIUrl":null,"url":null,"abstract":"<div><div>The purpose of this work was to prepare an astaxanthin emulsion stabilized by a soybean isolate protein (SPI)-hyaluronic acid (HA) complex and to investigate its protective effect on astaxanthin. In order to examine the impact of various ultrasonic energies (0 W–300 W) on the structural characteristics of the complex and the stability of the emulsion, the SPI-HA complex was created via ultrasonography. The findings demonstrated that ultrasonication may had an impact on the hydrophobic, electrostatic, and hydrogen bonding interactions between SPI and HA, which caused the protein structure to unfold and reveal the interior hydrophobic amino acid residues. Moreover, ultrasonication enhanced the emulsification qualities of SPI-HA complexes by lowering their average particle size. The rheological findings demonstrated that the emulsion's viscosity and energy storage modulus (G′) were considerably decreased by the ultrasonic treatment. The appearance of the emulsions and optical microscopy results further indicated that the emulsions prepared from SPI-HA had superior storage stability, pH stability, and light stability compared to pure SPI. SPI-HA exhibited superior emulsion stability and lower particle size at 150 W ultrasonic power. The AST incorporated in the emulsion was also well protected. The emulsion effectively slows down the degradation of AST. The findings of this study may help create more robust and natural emulsion delivery systems that guarantee the continuous or regulated release of lipophilic bioactive compounds.</div></div>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":null,"pages":null},"PeriodicalIF":7.7000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of ultrasonic treatment on the structure and emulsification properties of soybean isolate protein-hyaluronic acid complexes and the stability of their loaded astaxanthin emulsions\",\"authors\":\"\",\"doi\":\"10.1016/j.ijbiomac.2024.137284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The purpose of this work was to prepare an astaxanthin emulsion stabilized by a soybean isolate protein (SPI)-hyaluronic acid (HA) complex and to investigate its protective effect on astaxanthin. In order to examine the impact of various ultrasonic energies (0 W–300 W) on the structural characteristics of the complex and the stability of the emulsion, the SPI-HA complex was created via ultrasonography. The findings demonstrated that ultrasonication may had an impact on the hydrophobic, electrostatic, and hydrogen bonding interactions between SPI and HA, which caused the protein structure to unfold and reveal the interior hydrophobic amino acid residues. Moreover, ultrasonication enhanced the emulsification qualities of SPI-HA complexes by lowering their average particle size. The rheological findings demonstrated that the emulsion's viscosity and energy storage modulus (G′) were considerably decreased by the ultrasonic treatment. The appearance of the emulsions and optical microscopy results further indicated that the emulsions prepared from SPI-HA had superior storage stability, pH stability, and light stability compared to pure SPI. SPI-HA exhibited superior emulsion stability and lower particle size at 150 W ultrasonic power. The AST incorporated in the emulsion was also well protected. The emulsion effectively slows down the degradation of AST. The findings of this study may help create more robust and natural emulsion delivery systems that guarantee the continuous or regulated release of lipophilic bioactive compounds.</div></div>\",\"PeriodicalId\":333,\"journal\":{\"name\":\"International Journal of Biological Macromolecules\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biological Macromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141813024080930\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141813024080930","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Effect of ultrasonic treatment on the structure and emulsification properties of soybean isolate protein-hyaluronic acid complexes and the stability of their loaded astaxanthin emulsions
The purpose of this work was to prepare an astaxanthin emulsion stabilized by a soybean isolate protein (SPI)-hyaluronic acid (HA) complex and to investigate its protective effect on astaxanthin. In order to examine the impact of various ultrasonic energies (0 W–300 W) on the structural characteristics of the complex and the stability of the emulsion, the SPI-HA complex was created via ultrasonography. The findings demonstrated that ultrasonication may had an impact on the hydrophobic, electrostatic, and hydrogen bonding interactions between SPI and HA, which caused the protein structure to unfold and reveal the interior hydrophobic amino acid residues. Moreover, ultrasonication enhanced the emulsification qualities of SPI-HA complexes by lowering their average particle size. The rheological findings demonstrated that the emulsion's viscosity and energy storage modulus (G′) were considerably decreased by the ultrasonic treatment. The appearance of the emulsions and optical microscopy results further indicated that the emulsions prepared from SPI-HA had superior storage stability, pH stability, and light stability compared to pure SPI. SPI-HA exhibited superior emulsion stability and lower particle size at 150 W ultrasonic power. The AST incorporated in the emulsion was also well protected. The emulsion effectively slows down the degradation of AST. The findings of this study may help create more robust and natural emulsion delivery systems that guarantee the continuous or regulated release of lipophilic bioactive compounds.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.