{"title":"作为意识状态标记的频谱峰值分析和内在神经时标","authors":"","doi":"10.1016/j.nicl.2024.103698","DOIUrl":null,"url":null,"abstract":"<div><div>Resting state EEG in patients with disorders of consciousness (DOC) is characterized by an increase of power in the delta frequency band and a concurrent decrease in the alpha range, equivalent to a weakening or disappearance of the alpha peak. Prolongation of Intrinsic Neural Timescales (INTs) is also associated with DOCs. Together, this raises the question whether the decreased alpha peak relates to the prolonged INTs and, importantly, how that can be used for diagnosing the state of consciousness in DOC individuals. Analyzing resting state EEG recordings from both healthy subjects and DOC patients, we measure INTs through autocorrelation window (ACW) and utilize peak analysis to quantify the weakening of the alpha peak. First, we replicate previous findings of prolonged ACW in DOC patients. We then identify significantly lower alpha peak measures in DOC compared to controls. Interestingly, spectral peaks shift from the alpha to the theta range in several DOC subjects while such change is absent in healthy controls. Next, our study reveals a close relationship between ACW and alpha peak in both healthy and DOC subjects, a correlation that holds for theta peaks in DOC. Further, the prolonged ACW correlates with the state of consciousness, as quantified by the Coma Recovery Scale-Revised (CRS-R), and mediates the relationship between theta peak and CRS-R. Finally, through split analyses and machine learning, we show that ACW and alpha peak measures conjointly distinguish healthy controls and DOC patients with high accuracy (95.5%). In conclusion, we demonstrate that the prolongation of ACW, together with spectral peak measures, holds promise to serve as additional EEG biomarkers for diagnosing the state of consciousness in DOC subjects.</div></div>","PeriodicalId":54359,"journal":{"name":"Neuroimage-Clinical","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral peak analysis and intrinsic neural timescales as markers for the state of consciousness\",\"authors\":\"\",\"doi\":\"10.1016/j.nicl.2024.103698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Resting state EEG in patients with disorders of consciousness (DOC) is characterized by an increase of power in the delta frequency band and a concurrent decrease in the alpha range, equivalent to a weakening or disappearance of the alpha peak. Prolongation of Intrinsic Neural Timescales (INTs) is also associated with DOCs. Together, this raises the question whether the decreased alpha peak relates to the prolonged INTs and, importantly, how that can be used for diagnosing the state of consciousness in DOC individuals. Analyzing resting state EEG recordings from both healthy subjects and DOC patients, we measure INTs through autocorrelation window (ACW) and utilize peak analysis to quantify the weakening of the alpha peak. First, we replicate previous findings of prolonged ACW in DOC patients. We then identify significantly lower alpha peak measures in DOC compared to controls. Interestingly, spectral peaks shift from the alpha to the theta range in several DOC subjects while such change is absent in healthy controls. Next, our study reveals a close relationship between ACW and alpha peak in both healthy and DOC subjects, a correlation that holds for theta peaks in DOC. Further, the prolonged ACW correlates with the state of consciousness, as quantified by the Coma Recovery Scale-Revised (CRS-R), and mediates the relationship between theta peak and CRS-R. Finally, through split analyses and machine learning, we show that ACW and alpha peak measures conjointly distinguish healthy controls and DOC patients with high accuracy (95.5%). In conclusion, we demonstrate that the prolongation of ACW, together with spectral peak measures, holds promise to serve as additional EEG biomarkers for diagnosing the state of consciousness in DOC subjects.</div></div>\",\"PeriodicalId\":54359,\"journal\":{\"name\":\"Neuroimage-Clinical\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroimage-Clinical\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213158224001396\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroimage-Clinical","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213158224001396","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROIMAGING","Score":null,"Total":0}
Spectral peak analysis and intrinsic neural timescales as markers for the state of consciousness
Resting state EEG in patients with disorders of consciousness (DOC) is characterized by an increase of power in the delta frequency band and a concurrent decrease in the alpha range, equivalent to a weakening or disappearance of the alpha peak. Prolongation of Intrinsic Neural Timescales (INTs) is also associated with DOCs. Together, this raises the question whether the decreased alpha peak relates to the prolonged INTs and, importantly, how that can be used for diagnosing the state of consciousness in DOC individuals. Analyzing resting state EEG recordings from both healthy subjects and DOC patients, we measure INTs through autocorrelation window (ACW) and utilize peak analysis to quantify the weakening of the alpha peak. First, we replicate previous findings of prolonged ACW in DOC patients. We then identify significantly lower alpha peak measures in DOC compared to controls. Interestingly, spectral peaks shift from the alpha to the theta range in several DOC subjects while such change is absent in healthy controls. Next, our study reveals a close relationship between ACW and alpha peak in both healthy and DOC subjects, a correlation that holds for theta peaks in DOC. Further, the prolonged ACW correlates with the state of consciousness, as quantified by the Coma Recovery Scale-Revised (CRS-R), and mediates the relationship between theta peak and CRS-R. Finally, through split analyses and machine learning, we show that ACW and alpha peak measures conjointly distinguish healthy controls and DOC patients with high accuracy (95.5%). In conclusion, we demonstrate that the prolongation of ACW, together with spectral peak measures, holds promise to serve as additional EEG biomarkers for diagnosing the state of consciousness in DOC subjects.
期刊介绍:
NeuroImage: Clinical, a journal of diseases, disorders and syndromes involving the Nervous System, provides a vehicle for communicating important advances in the study of abnormal structure-function relationships of the human nervous system based on imaging.
The focus of NeuroImage: Clinical is on defining changes to the brain associated with primary neurologic and psychiatric diseases and disorders of the nervous system as well as behavioral syndromes and developmental conditions. The main criterion for judging papers is the extent of scientific advancement in the understanding of the pathophysiologic mechanisms of diseases and disorders, in identification of functional models that link clinical signs and symptoms with brain function and in the creation of image based tools applicable to a broad range of clinical needs including diagnosis, monitoring and tracking of illness, predicting therapeutic response and development of new treatments. Papers dealing with structure and function in animal models will also be considered if they reveal mechanisms that can be readily translated to human conditions.