利用聚类子空间对高维数据进行单向 MANOVA 检验

Pub Date : 2024-10-29 DOI:10.1016/j.spl.2024.110293
Minyuan Lu, Bu Zhou
{"title":"利用聚类子空间对高维数据进行单向 MANOVA 检验","authors":"Minyuan Lu,&nbsp;Bu Zhou","doi":"10.1016/j.spl.2024.110293","DOIUrl":null,"url":null,"abstract":"<div><div>This study focuses on the high-dimensional one-way analysis of variance problem, specifically, testing whether multiple population mean vectors are equal in the context of high-dimensional data. To solve the problem that classical multivariate analysis of variance (MANOVA) test statistics are undefined when the dimensionality surpasses the sample size, we propose a random permutation test using low-dimensional subspaces obtained by clustering of variables. The test statistics are derived from a one-way MANOVA decomposition for clustered variables and this approach utilizes the correlation information among variables to ensure high testing power. Simulation studies indicate that the proposed test performs well with high-dimensional data.</div></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A one-way MANOVA test for high-dimensional data using clustering subspaces\",\"authors\":\"Minyuan Lu,&nbsp;Bu Zhou\",\"doi\":\"10.1016/j.spl.2024.110293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study focuses on the high-dimensional one-way analysis of variance problem, specifically, testing whether multiple population mean vectors are equal in the context of high-dimensional data. To solve the problem that classical multivariate analysis of variance (MANOVA) test statistics are undefined when the dimensionality surpasses the sample size, we propose a random permutation test using low-dimensional subspaces obtained by clustering of variables. The test statistics are derived from a one-way MANOVA decomposition for clustered variables and this approach utilizes the correlation information among variables to ensure high testing power. Simulation studies indicate that the proposed test performs well with high-dimensional data.</div></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167715224002621\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167715224002621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究主要关注高维单向方差分析问题,特别是在高维数据背景下检验多个群体均值向量是否相等的问题。为了解决当维度超过样本量时,经典的多元方差分析(MANOVA)检验统计量无法定义的问题,我们提出了一种利用变量聚类得到的低维子空间进行随机置换检验的方法。测试统计量来自对聚类变量的单向 MANOVA 分解,这种方法利用了变量间的相关信息,确保了较高的测试能力。模拟研究表明,所提出的检验方法在处理高维数据时表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
A one-way MANOVA test for high-dimensional data using clustering subspaces
This study focuses on the high-dimensional one-way analysis of variance problem, specifically, testing whether multiple population mean vectors are equal in the context of high-dimensional data. To solve the problem that classical multivariate analysis of variance (MANOVA) test statistics are undefined when the dimensionality surpasses the sample size, we propose a random permutation test using low-dimensional subspaces obtained by clustering of variables. The test statistics are derived from a one-way MANOVA decomposition for clustered variables and this approach utilizes the correlation information among variables to ensure high testing power. Simulation studies indicate that the proposed test performs well with high-dimensional data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1