Cong Dong , Gordon Huang , Guanhui Cheng , Yanpeng Cai , Jinxin Zhu , Shan Zhao
{"title":"用于评估加拿大各地波浪能资源的波浪周期区域化集合估算。第二部分:波浪周期和波浪能分析","authors":"Cong Dong , Gordon Huang , Guanhui Cheng , Yanpeng Cai , Jinxin Zhu , Shan Zhao","doi":"10.1016/j.ocecoaman.2024.107458","DOIUrl":null,"url":null,"abstract":"<div><div>The cornerstone for harnessing and utilizing wave energy resources lies in the precise and thorough estimation and assessment of wave energy fluxes through advanced modeling of wave periods. This study implements the developed macroscale regionalized ensemble wave-period modeling (MREWPM) method to accomplish the initial integrated estimation and analysis of wave periods and wave energy fluxes across Canada, complemented by advanced estimations of wave heights and wind speeds. The results indicate that Canadian wave periods lengthen in shallow, low-backscatter, southern, remote, or eastern waters, and exhibit temporal variability in breezy, low-backscatter, southern, remote, or eastern regions. The trend of wave periods exhibited fluctuations, decreasing before and increasing after the trough (9.06 s in 2004) during cool seasons. Temporal variabilities and trends of wave periods were more fragmented and heterogeneous compared to averages. Canadian wave energy fluxes generally exhibit an increase southward with latitudes. The wave energy typically diminishes from offshore (deep waters) to nearshore areas (shallow waters), with this attenuation being more pronounced in winter months. There is a rough decrease from winter, autumn, and spring to summer months, mirroring the seasonal variations of wave periods. This seasonality tends to be more pronounced in highly energetic regions, such as the Pacific and Atlantic oceans. This study enhances reliability and feasibility of macroscale wave-period and wave-energy estimation and analyses, offering scientific support for wave energy development, wave climatology, and ocean engineering.</div></div>","PeriodicalId":54698,"journal":{"name":"Ocean & Coastal Management","volume":"259 ","pages":"Article 107458"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regionalized ensemble estimation of wave periods for assessing wave energy resources across Canada. Part II: Wave-period and wave-energy analyses\",\"authors\":\"Cong Dong , Gordon Huang , Guanhui Cheng , Yanpeng Cai , Jinxin Zhu , Shan Zhao\",\"doi\":\"10.1016/j.ocecoaman.2024.107458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The cornerstone for harnessing and utilizing wave energy resources lies in the precise and thorough estimation and assessment of wave energy fluxes through advanced modeling of wave periods. This study implements the developed macroscale regionalized ensemble wave-period modeling (MREWPM) method to accomplish the initial integrated estimation and analysis of wave periods and wave energy fluxes across Canada, complemented by advanced estimations of wave heights and wind speeds. The results indicate that Canadian wave periods lengthen in shallow, low-backscatter, southern, remote, or eastern waters, and exhibit temporal variability in breezy, low-backscatter, southern, remote, or eastern regions. The trend of wave periods exhibited fluctuations, decreasing before and increasing after the trough (9.06 s in 2004) during cool seasons. Temporal variabilities and trends of wave periods were more fragmented and heterogeneous compared to averages. Canadian wave energy fluxes generally exhibit an increase southward with latitudes. The wave energy typically diminishes from offshore (deep waters) to nearshore areas (shallow waters), with this attenuation being more pronounced in winter months. There is a rough decrease from winter, autumn, and spring to summer months, mirroring the seasonal variations of wave periods. This seasonality tends to be more pronounced in highly energetic regions, such as the Pacific and Atlantic oceans. This study enhances reliability and feasibility of macroscale wave-period and wave-energy estimation and analyses, offering scientific support for wave energy development, wave climatology, and ocean engineering.</div></div>\",\"PeriodicalId\":54698,\"journal\":{\"name\":\"Ocean & Coastal Management\",\"volume\":\"259 \",\"pages\":\"Article 107458\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ocean & Coastal Management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0964569124004435\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean & Coastal Management","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0964569124004435","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
Regionalized ensemble estimation of wave periods for assessing wave energy resources across Canada. Part II: Wave-period and wave-energy analyses
The cornerstone for harnessing and utilizing wave energy resources lies in the precise and thorough estimation and assessment of wave energy fluxes through advanced modeling of wave periods. This study implements the developed macroscale regionalized ensemble wave-period modeling (MREWPM) method to accomplish the initial integrated estimation and analysis of wave periods and wave energy fluxes across Canada, complemented by advanced estimations of wave heights and wind speeds. The results indicate that Canadian wave periods lengthen in shallow, low-backscatter, southern, remote, or eastern waters, and exhibit temporal variability in breezy, low-backscatter, southern, remote, or eastern regions. The trend of wave periods exhibited fluctuations, decreasing before and increasing after the trough (9.06 s in 2004) during cool seasons. Temporal variabilities and trends of wave periods were more fragmented and heterogeneous compared to averages. Canadian wave energy fluxes generally exhibit an increase southward with latitudes. The wave energy typically diminishes from offshore (deep waters) to nearshore areas (shallow waters), with this attenuation being more pronounced in winter months. There is a rough decrease from winter, autumn, and spring to summer months, mirroring the seasonal variations of wave periods. This seasonality tends to be more pronounced in highly energetic regions, such as the Pacific and Atlantic oceans. This study enhances reliability and feasibility of macroscale wave-period and wave-energy estimation and analyses, offering scientific support for wave energy development, wave climatology, and ocean engineering.
期刊介绍:
Ocean & Coastal Management is the leading international journal dedicated to the study of all aspects of ocean and coastal management from the global to local levels.
We publish rigorously peer-reviewed manuscripts from all disciplines, and inter-/trans-disciplinary and co-designed research, but all submissions must make clear the relevance to management and/or governance issues relevant to the sustainable development and conservation of oceans and coasts.
Comparative studies (from sub-national to trans-national cases, and other management / policy arenas) are encouraged, as are studies that critically assess current management practices and governance approaches. Submissions involving robust analysis, development of theory, and improvement of management practice are especially welcome.