Zhaopeng Hu , Xin Jiang , Benteng Liu , Qiao Li , Hongda Meng , Yihu Song , Yongzhong Bao , Qiang Zheng
{"title":"天然橡胶与杜仲胶的共硫化用于调解非线性流变行为","authors":"Zhaopeng Hu , Xin Jiang , Benteng Liu , Qiao Li , Hongda Meng , Yihu Song , Yongzhong Bao , Qiang Zheng","doi":"10.1016/j.polymer.2024.127797","DOIUrl":null,"url":null,"abstract":"<div><div>Co-vulcanization of natural rubber (NR) and high-moduli Eucommia ulmoides gum (EUG) is promising while the reduction in crystallinity of crosslinked EUG is adverse for developing high-performance materials. Proposed herein is a novel method to prepare high-strength and high-stretchability NR/EUG vulcanizates with rapid vulcanization of EUG into slightly crosslinked particles, followed by further vulcanization of NR to form crosslinked matrix network. Deep eutectic solvents (DESs) are employed to facilitate the vulcanization of EUG during its blending with NR. The two-step vulcanization results in vulcanizates exhibiting superior mechanical properties under shear, tensile, and compressive conditions, significantly exceeding those of vulcanizates prepared by traditional processing methods. The reinforcement mechanism is elucidated by controlling thermomechanical coupling conditions and is supported by comprehensive structural characterizations. It is suggested that the EUG crystalline regions, maintained through the special processing method, work in conjunction with the stress-induced crystallization of the matrix to enhance the vulcanizates, nearly doubling the deformation stress at 800 % strain. The crystalline regions can mediate the deformation stress during shear and compression and weaken nonlinear rheological behavior. The established structure-performance relationship is guidable for preparing high-performance NR/EUG blend vulcanizates.</div></div>","PeriodicalId":405,"journal":{"name":"Polymer","volume":"315 ","pages":"Article 127797"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Co-vulcanization of natural rubber and Eucommia ulmoides gum for mediation of the nonlinear rheology behaviors\",\"authors\":\"Zhaopeng Hu , Xin Jiang , Benteng Liu , Qiao Li , Hongda Meng , Yihu Song , Yongzhong Bao , Qiang Zheng\",\"doi\":\"10.1016/j.polymer.2024.127797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Co-vulcanization of natural rubber (NR) and high-moduli Eucommia ulmoides gum (EUG) is promising while the reduction in crystallinity of crosslinked EUG is adverse for developing high-performance materials. Proposed herein is a novel method to prepare high-strength and high-stretchability NR/EUG vulcanizates with rapid vulcanization of EUG into slightly crosslinked particles, followed by further vulcanization of NR to form crosslinked matrix network. Deep eutectic solvents (DESs) are employed to facilitate the vulcanization of EUG during its blending with NR. The two-step vulcanization results in vulcanizates exhibiting superior mechanical properties under shear, tensile, and compressive conditions, significantly exceeding those of vulcanizates prepared by traditional processing methods. The reinforcement mechanism is elucidated by controlling thermomechanical coupling conditions and is supported by comprehensive structural characterizations. It is suggested that the EUG crystalline regions, maintained through the special processing method, work in conjunction with the stress-induced crystallization of the matrix to enhance the vulcanizates, nearly doubling the deformation stress at 800 % strain. The crystalline regions can mediate the deformation stress during shear and compression and weaken nonlinear rheological behavior. The established structure-performance relationship is guidable for preparing high-performance NR/EUG blend vulcanizates.</div></div>\",\"PeriodicalId\":405,\"journal\":{\"name\":\"Polymer\",\"volume\":\"315 \",\"pages\":\"Article 127797\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0032386124011339\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032386124011339","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Co-vulcanization of natural rubber and Eucommia ulmoides gum for mediation of the nonlinear rheology behaviors
Co-vulcanization of natural rubber (NR) and high-moduli Eucommia ulmoides gum (EUG) is promising while the reduction in crystallinity of crosslinked EUG is adverse for developing high-performance materials. Proposed herein is a novel method to prepare high-strength and high-stretchability NR/EUG vulcanizates with rapid vulcanization of EUG into slightly crosslinked particles, followed by further vulcanization of NR to form crosslinked matrix network. Deep eutectic solvents (DESs) are employed to facilitate the vulcanization of EUG during its blending with NR. The two-step vulcanization results in vulcanizates exhibiting superior mechanical properties under shear, tensile, and compressive conditions, significantly exceeding those of vulcanizates prepared by traditional processing methods. The reinforcement mechanism is elucidated by controlling thermomechanical coupling conditions and is supported by comprehensive structural characterizations. It is suggested that the EUG crystalline regions, maintained through the special processing method, work in conjunction with the stress-induced crystallization of the matrix to enhance the vulcanizates, nearly doubling the deformation stress at 800 % strain. The crystalline regions can mediate the deformation stress during shear and compression and weaken nonlinear rheological behavior. The established structure-performance relationship is guidable for preparing high-performance NR/EUG blend vulcanizates.
期刊介绍:
Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics.
The main scope is covered but not limited to the following core areas:
Polymer Materials
Nanocomposites and hybrid nanomaterials
Polymer blends, films, fibres, networks and porous materials
Physical Characterization
Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films
Polymer Engineering
Advanced multiscale processing methods
Polymer Synthesis, Modification and Self-assembly
Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization
Technological Applications
Polymers for energy generation and storage
Polymer membranes for separation technology
Polymers for opto- and microelectronics.