肝迷走神经传入传递时钟信号,调节昼夜节律食物摄入量

IF 44.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Science Pub Date : 2024-11-07 DOI:10.1126/science.adn2786
Lauren N. Woodie, Lily C. Melink, Mohit Midha, Alan M. de Araújo, Caroline E. Geisler, Ahren J. Alberto, Brianna M. Krusen, Delaine M. Zundell, Guillaume de Lartigue, Matthew R. Hayes, Mitchell A. Lazar
{"title":"肝迷走神经传入传递时钟信号,调节昼夜节律食物摄入量","authors":"Lauren N. Woodie,&nbsp;Lily C. Melink,&nbsp;Mohit Midha,&nbsp;Alan M. de Araújo,&nbsp;Caroline E. Geisler,&nbsp;Ahren J. Alberto,&nbsp;Brianna M. Krusen,&nbsp;Delaine M. Zundell,&nbsp;Guillaume de Lartigue,&nbsp;Matthew R. Hayes,&nbsp;Mitchell A. Lazar","doi":"10.1126/science.adn2786","DOIUrl":null,"url":null,"abstract":"<div >Circadian desynchrony induced by shiftwork or jet lag is detrimental to metabolic health, but how synchronous or desynchronous signals are transmitted among tissues is unknown. We report that liver molecular clock dysfunction is signaled to the brain through the hepatic vagal afferent nerve (HVAN), leading to altered food intake patterns that are corrected by ablation of the HVAN. Hepatic branch vagotomy also prevents food intake disruptions induced by high-fat diet feeding and reduces body weight gain. Our findings reveal a homeostatic feedback signal that relies on communication between the liver and the brain to control circadian food intake patterns. This identifies the hepatic vagus nerve as a potential therapeutic target for obesity in the setting of chronodisruption.</div>","PeriodicalId":21678,"journal":{"name":"Science","volume":"386 6722","pages":""},"PeriodicalIF":44.7000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hepatic vagal afferents convey clock-dependent signals to regulate circadian food intake\",\"authors\":\"Lauren N. Woodie,&nbsp;Lily C. Melink,&nbsp;Mohit Midha,&nbsp;Alan M. de Araújo,&nbsp;Caroline E. Geisler,&nbsp;Ahren J. Alberto,&nbsp;Brianna M. Krusen,&nbsp;Delaine M. Zundell,&nbsp;Guillaume de Lartigue,&nbsp;Matthew R. Hayes,&nbsp;Mitchell A. Lazar\",\"doi\":\"10.1126/science.adn2786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Circadian desynchrony induced by shiftwork or jet lag is detrimental to metabolic health, but how synchronous or desynchronous signals are transmitted among tissues is unknown. We report that liver molecular clock dysfunction is signaled to the brain through the hepatic vagal afferent nerve (HVAN), leading to altered food intake patterns that are corrected by ablation of the HVAN. Hepatic branch vagotomy also prevents food intake disruptions induced by high-fat diet feeding and reduces body weight gain. Our findings reveal a homeostatic feedback signal that relies on communication between the liver and the brain to control circadian food intake patterns. This identifies the hepatic vagus nerve as a potential therapeutic target for obesity in the setting of chronodisruption.</div>\",\"PeriodicalId\":21678,\"journal\":{\"name\":\"Science\",\"volume\":\"386 6722\",\"pages\":\"\"},\"PeriodicalIF\":44.7000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/science.adn2786\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/science.adn2786","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

轮班工作或时差引起的昼夜节律不同步不利于新陈代谢健康,但同步或不同步信号如何在组织间传递尚不清楚。我们报告说,肝脏分子时钟功能障碍通过肝迷走神经传入神经(HVAN)向大脑发出信号,导致食物摄入模式改变,而这种改变可通过消融肝迷走神经传入神经得到纠正。肝支迷走神经切断术还能防止高脂饮食引起的食物摄入中断,并减少体重增加。我们的研究结果揭示了一种依靠肝脏和大脑之间的交流来控制昼夜节律食物摄入模式的平衡反馈信号。这确定了肝迷走神经是在昼夜节律紊乱情况下肥胖症的潜在治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hepatic vagal afferents convey clock-dependent signals to regulate circadian food intake
Circadian desynchrony induced by shiftwork or jet lag is detrimental to metabolic health, but how synchronous or desynchronous signals are transmitted among tissues is unknown. We report that liver molecular clock dysfunction is signaled to the brain through the hepatic vagal afferent nerve (HVAN), leading to altered food intake patterns that are corrected by ablation of the HVAN. Hepatic branch vagotomy also prevents food intake disruptions induced by high-fat diet feeding and reduces body weight gain. Our findings reveal a homeostatic feedback signal that relies on communication between the liver and the brain to control circadian food intake patterns. This identifies the hepatic vagus nerve as a potential therapeutic target for obesity in the setting of chronodisruption.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science
Science 综合性期刊-综合性期刊
CiteScore
61.10
自引率
0.90%
发文量
0
审稿时长
2.1 months
期刊介绍: Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research. Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated. Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.
期刊最新文献
Reconstruction of the human amylase locus reveals ancient duplications seeding modern-day variation. Shades of blue. Ship collision risk threatens whales across the world's oceans. Small wetlands: Critical to flood management. Specific tRNAs promote mRNA decay by recruiting the CCR4-NOT complex to translating ribosomes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1