Wanchuan Dong, Xinlu Bai, Linlin Zhao, Hao Dong, Changdong Liu
{"title":"对西北太平洋具有不同生态偏好的重要经济物种因气候引起的生境转移进行比较分析","authors":"Wanchuan Dong, Xinlu Bai, Linlin Zhao, Hao Dong, Changdong Liu","doi":"10.3389/fmars.2024.1476097","DOIUrl":null,"url":null,"abstract":"The Northwest Pacific Ocean is the most productive fishing ground in the Pacific Ocean, with a continuous rise in water temperature since 1990. We developed stacked species distribution models (SSDMs) to estimate the impacts of climate change on the distribution dynamics of economically significant species under three climate change scenarios for the periods 2040-2060 and 2080-2100. Overall, water temperature is the most important factor in shaping the distribution patterns of species, followed by water depth. The predictive results indicate that all the species show a northward migration in the future, and the migration distance varies greatly among species. Most pelagic species will expand their habitats under climate change, implying their stronger adaptability than benthic species. Tropical fishes are more adaptable to climate change than species in other climate zones. Though limitations existed, our study provided baseline information for designing a climate-adaptive, dynamic fishery management strategy for maintaining sustainable fisheries.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative analysis of climate-induced habitat shift of economically significant species with diverse ecological preferences in the Northwest Pacific\",\"authors\":\"Wanchuan Dong, Xinlu Bai, Linlin Zhao, Hao Dong, Changdong Liu\",\"doi\":\"10.3389/fmars.2024.1476097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Northwest Pacific Ocean is the most productive fishing ground in the Pacific Ocean, with a continuous rise in water temperature since 1990. We developed stacked species distribution models (SSDMs) to estimate the impacts of climate change on the distribution dynamics of economically significant species under three climate change scenarios for the periods 2040-2060 and 2080-2100. Overall, water temperature is the most important factor in shaping the distribution patterns of species, followed by water depth. The predictive results indicate that all the species show a northward migration in the future, and the migration distance varies greatly among species. Most pelagic species will expand their habitats under climate change, implying their stronger adaptability than benthic species. Tropical fishes are more adaptable to climate change than species in other climate zones. Though limitations existed, our study provided baseline information for designing a climate-adaptive, dynamic fishery management strategy for maintaining sustainable fisheries.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3389/fmars.2024.1476097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmars.2024.1476097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Comparative analysis of climate-induced habitat shift of economically significant species with diverse ecological preferences in the Northwest Pacific
The Northwest Pacific Ocean is the most productive fishing ground in the Pacific Ocean, with a continuous rise in water temperature since 1990. We developed stacked species distribution models (SSDMs) to estimate the impacts of climate change on the distribution dynamics of economically significant species under three climate change scenarios for the periods 2040-2060 and 2080-2100. Overall, water temperature is the most important factor in shaping the distribution patterns of species, followed by water depth. The predictive results indicate that all the species show a northward migration in the future, and the migration distance varies greatly among species. Most pelagic species will expand their habitats under climate change, implying their stronger adaptability than benthic species. Tropical fishes are more adaptable to climate change than species in other climate zones. Though limitations existed, our study provided baseline information for designing a climate-adaptive, dynamic fishery management strategy for maintaining sustainable fisheries.