强大的网络,关键的专利:识别和评估关键技术影响者

IF 4.6 3区 管理学 Q1 BUSINESS IEEE Transactions on Engineering Management Pub Date : 2024-10-23 DOI:10.1109/TEM.2024.3485751
Tao Wang;Chao Yu;Jun Huang;Hsin-Ning Su
{"title":"强大的网络,关键的专利:识别和评估关键技术影响者","authors":"Tao Wang;Chao Yu;Jun Huang;Hsin-Ning Su","doi":"10.1109/TEM.2024.3485751","DOIUrl":null,"url":null,"abstract":"In a world of swiftly changing technology and external challenges, predicting the role of core patents in technology systems' strength and power is vital. This research presents a method that combines robustness analysis of patent citation networks with core patent identification, assessing their global industrial technology innovation significance. It aims to identify patents key to network stability and external change adaptation, understanding their impact in dynamic tech environments. Using network robustness, the study examines connectivity, efficiency, and clustering in patent citation networks, assessing patent node importance based on structural feature changes postremoval. The study employs patents from five technological domains as case studies, ranking the importance of nodes and exploring how patent attributes affect these rankings. This research contributes by merging patent network robustness with valuation, supporting IP strategies and tech management policies, and offering insights into tech system complexity and dynamism.","PeriodicalId":55009,"journal":{"name":"IEEE Transactions on Engineering Management","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust Networks, Pivotal Patents: Identifying and Assessing Key Technological Influencers\",\"authors\":\"Tao Wang;Chao Yu;Jun Huang;Hsin-Ning Su\",\"doi\":\"10.1109/TEM.2024.3485751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a world of swiftly changing technology and external challenges, predicting the role of core patents in technology systems' strength and power is vital. This research presents a method that combines robustness analysis of patent citation networks with core patent identification, assessing their global industrial technology innovation significance. It aims to identify patents key to network stability and external change adaptation, understanding their impact in dynamic tech environments. Using network robustness, the study examines connectivity, efficiency, and clustering in patent citation networks, assessing patent node importance based on structural feature changes postremoval. The study employs patents from five technological domains as case studies, ranking the importance of nodes and exploring how patent attributes affect these rankings. This research contributes by merging patent network robustness with valuation, supporting IP strategies and tech management policies, and offering insights into tech system complexity and dynamism.\",\"PeriodicalId\":55009,\"journal\":{\"name\":\"IEEE Transactions on Engineering Management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Engineering Management\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10733759/\",\"RegionNum\":3,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Engineering Management","FirstCategoryId":"91","ListUrlMain":"https://ieeexplore.ieee.org/document/10733759/","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 0

摘要

在技术日新月异、外部挑战层出不穷的今天,预测核心专利在技术体系的实力和力量中的作用至关重要。本研究提出了一种方法,将专利引用网络的稳健性分析与核心专利识别相结合,评估其全球产业技术创新意义。其目的是识别网络稳定性和外部变化适应性的关键专利,了解它们在动态技术环境中的影响。利用网络鲁棒性,该研究考察了专利引用网络的连通性、效率和聚类,并根据删除后的结构特征变化评估了专利节点的重要性。研究采用五个技术领域的专利作为案例,对节点的重要性进行排序,并探讨专利属性如何影响这些排序。这项研究将专利网络的稳健性与价值评估相结合,为知识产权战略和科技管理政策提供支持,并为科技系统的复杂性和动态性提供见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust Networks, Pivotal Patents: Identifying and Assessing Key Technological Influencers
In a world of swiftly changing technology and external challenges, predicting the role of core patents in technology systems' strength and power is vital. This research presents a method that combines robustness analysis of patent citation networks with core patent identification, assessing their global industrial technology innovation significance. It aims to identify patents key to network stability and external change adaptation, understanding their impact in dynamic tech environments. Using network robustness, the study examines connectivity, efficiency, and clustering in patent citation networks, assessing patent node importance based on structural feature changes postremoval. The study employs patents from five technological domains as case studies, ranking the importance of nodes and exploring how patent attributes affect these rankings. This research contributes by merging patent network robustness with valuation, supporting IP strategies and tech management policies, and offering insights into tech system complexity and dynamism.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Engineering Management
IEEE Transactions on Engineering Management 管理科学-工程:工业
CiteScore
10.30
自引率
19.00%
发文量
604
审稿时长
5.3 months
期刊介绍: Management of technical functions such as research, development, and engineering in industry, government, university, and other settings. Emphasis is on studies carried on within an organization to help in decision making or policy formation for RD&E.
期刊最新文献
Can the Input of Data Elements Improve Manufacturing Productivity? Effect Measurement and Path Analysis Modeling and Simulation Analysis of Influencing Factors of MES Implementation in Zero Defect Management Enterprises in Digital Transformation Editorial: Unveiling the Digital Transformation of Organizations Across Multiple Levels of Analysis Robust Networks, Pivotal Patents: Identifying and Assessing Key Technological Influencers Too Much AI Hype, Too Little Emphasis on Learning? Entrepreneurs Designing Business Models Through Learning-by-Conversing With Generative AI
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1