FlexFL:在不确定场景中通过 APoZ 引导的灵活剪枝进行异构联合学习

IF 2.7 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems Pub Date : 2024-11-06 DOI:10.1109/TCAD.2024.3444695
Zekai Chen;Chentao Jia;Ming Hu;Xiaofei Xie;Anran Li;Mingsong Chen
{"title":"FlexFL:在不确定场景中通过 APoZ 引导的灵活剪枝进行异构联合学习","authors":"Zekai Chen;Chentao Jia;Ming Hu;Xiaofei Xie;Anran Li;Mingsong Chen","doi":"10.1109/TCAD.2024.3444695","DOIUrl":null,"url":null,"abstract":"Along with the increasing popularity of deep learning (DL) techniques, more and more Artificial Intelligence of Things (AIoT) systems are adopting federated learning (FL) to enable privacy-aware collaborative learning among the AIoT devices. However, due to the inherent data and device heterogeneity issues, the existing FL-based AIoT systems suffer from the model selection problem. Although various heterogeneous FL methods have been investigated to enable collaborative training among the heterogeneous models, there is still a lack of 1) wise heterogeneous model generation methods for the devices; 2) consideration of uncertain factors; and 3) performance guarantee for the large models, thus strongly limiting the overall FL performance. To address the above issues, this article introduces a novel heterogeneous FL framework named FlexFL. By adopting our average percentage of zeros (APoZ)-guided flexible pruning strategy, FlexFL can effectively derive best-fit models for the heterogeneous devices to explore their greatest potential. Meanwhile, our proposed adaptive local pruning strategy allows the AIoT devices to prune their received models according to their varying resources within uncertain scenarios. Moreover, based on the self-knowledge distillation, FlexFL can enhance the inference performance of the large models by learning the knowledge from the small models. Comprehensive experimental results show that, compared to the state-of-the-art heterogeneous FL methods, FlexFL can significantly improve the overall inference accuracy by up to 14.24%. Our code can be found here \n<uri>https://github.com/mastlab-T3S/FlexFL</uri>\n.","PeriodicalId":13251,"journal":{"name":"IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems","volume":"43 11","pages":"4069-4080"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FlexFL: Heterogeneous Federated Learning via APoZ-Guided Flexible Pruning in Uncertain Scenarios\",\"authors\":\"Zekai Chen;Chentao Jia;Ming Hu;Xiaofei Xie;Anran Li;Mingsong Chen\",\"doi\":\"10.1109/TCAD.2024.3444695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Along with the increasing popularity of deep learning (DL) techniques, more and more Artificial Intelligence of Things (AIoT) systems are adopting federated learning (FL) to enable privacy-aware collaborative learning among the AIoT devices. However, due to the inherent data and device heterogeneity issues, the existing FL-based AIoT systems suffer from the model selection problem. Although various heterogeneous FL methods have been investigated to enable collaborative training among the heterogeneous models, there is still a lack of 1) wise heterogeneous model generation methods for the devices; 2) consideration of uncertain factors; and 3) performance guarantee for the large models, thus strongly limiting the overall FL performance. To address the above issues, this article introduces a novel heterogeneous FL framework named FlexFL. By adopting our average percentage of zeros (APoZ)-guided flexible pruning strategy, FlexFL can effectively derive best-fit models for the heterogeneous devices to explore their greatest potential. Meanwhile, our proposed adaptive local pruning strategy allows the AIoT devices to prune their received models according to their varying resources within uncertain scenarios. Moreover, based on the self-knowledge distillation, FlexFL can enhance the inference performance of the large models by learning the knowledge from the small models. Comprehensive experimental results show that, compared to the state-of-the-art heterogeneous FL methods, FlexFL can significantly improve the overall inference accuracy by up to 14.24%. Our code can be found here \\n<uri>https://github.com/mastlab-T3S/FlexFL</uri>\\n.\",\"PeriodicalId\":13251,\"journal\":{\"name\":\"IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems\",\"volume\":\"43 11\",\"pages\":\"4069-4080\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10745864/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10745864/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

随着深度学习(DL)技术的日益普及,越来越多的人工智能物联网(AIoT)系统开始采用联合学习(FL)技术,以实现人工智能物联网设备之间的隐私感知协作学习。然而,由于固有的数据和设备异构问题,现有的基于联合学习的人工智能物联网系统存在模型选择问题。尽管已经研究了多种异构 FL 方法来实现异构模型之间的协同训练,但仍然缺乏:1)针对设备的明智的异构模型生成方法;2)对不确定因素的考虑;3)大型模型的性能保证,从而严重限制了 FL 的整体性能。针对上述问题,本文介绍了一种名为 FlexFL 的新型异构 FL 框架。通过采用以平均零点百分比(APoZ)为指导的灵活剪枝策略,FlexFL 可以有效地为异构设备推导出最合适的模型,以挖掘其最大潜力。同时,我们提出的自适应局部剪枝策略允许 AIoT 设备根据其在不确定场景下的不同资源剪枝其接收到的模型。此外,基于自我知识提炼,FlexFL 可以通过学习小模型的知识来提高大模型的推理性能。综合实验结果表明,与最先进的异构 FL 方法相比,FlexFL 可以显著提高整体推理准确率,最高可达 14.24%。我们的代码见 https://github.com/mastlab-T3S/FlexFL。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FlexFL: Heterogeneous Federated Learning via APoZ-Guided Flexible Pruning in Uncertain Scenarios
Along with the increasing popularity of deep learning (DL) techniques, more and more Artificial Intelligence of Things (AIoT) systems are adopting federated learning (FL) to enable privacy-aware collaborative learning among the AIoT devices. However, due to the inherent data and device heterogeneity issues, the existing FL-based AIoT systems suffer from the model selection problem. Although various heterogeneous FL methods have been investigated to enable collaborative training among the heterogeneous models, there is still a lack of 1) wise heterogeneous model generation methods for the devices; 2) consideration of uncertain factors; and 3) performance guarantee for the large models, thus strongly limiting the overall FL performance. To address the above issues, this article introduces a novel heterogeneous FL framework named FlexFL. By adopting our average percentage of zeros (APoZ)-guided flexible pruning strategy, FlexFL can effectively derive best-fit models for the heterogeneous devices to explore their greatest potential. Meanwhile, our proposed adaptive local pruning strategy allows the AIoT devices to prune their received models according to their varying resources within uncertain scenarios. Moreover, based on the self-knowledge distillation, FlexFL can enhance the inference performance of the large models by learning the knowledge from the small models. Comprehensive experimental results show that, compared to the state-of-the-art heterogeneous FL methods, FlexFL can significantly improve the overall inference accuracy by up to 14.24%. Our code can be found here https://github.com/mastlab-T3S/FlexFL .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.60
自引率
13.80%
发文量
500
审稿时长
7 months
期刊介绍: The purpose of this Transactions is to publish papers of interest to individuals in the area of computer-aided design of integrated circuits and systems composed of analog, digital, mixed-signal, optical, or microwave components. The aids include methods, models, algorithms, and man-machine interfaces for system-level, physical and logical design including: planning, synthesis, partitioning, modeling, simulation, layout, verification, testing, hardware-software co-design and documentation of integrated circuit and system designs of all complexities. Design tools and techniques for evaluating and designing integrated circuits and systems for metrics such as performance, power, reliability, testability, and security are a focus.
期刊最新文献
Table of Contents IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems society information IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems publication information Table of Contents IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems publication information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1