在微生物中植入基于 DNA 的自然语言,造福于未来的研究人员†。

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY Digital discovery Pub Date : 2024-10-14 DOI:10.1039/D4DD00251B
Heqian Zhang, Jiaquan Huang, Xiaoyu Wang, Zhizeng Gao, Song Meng, Hang Li, Shanshan Zhou, Shang Wang, Shan Wang, Xunyou Yan, Xinwei Yang, Xiaoluo Huang and Zhiwei Qin
{"title":"在微生物中植入基于 DNA 的自然语言,造福于未来的研究人员†。","authors":"Heqian Zhang, Jiaquan Huang, Xiaoyu Wang, Zhizeng Gao, Song Meng, Hang Li, Shanshan Zhou, Shang Wang, Shan Wang, Xunyou Yan, Xinwei Yang, Xiaoluo Huang and Zhiwei Qin","doi":"10.1039/D4DD00251B","DOIUrl":null,"url":null,"abstract":"<p >Microorganisms are valuable resources as antibiotic producers, biocontrol agents, and symbiotic agents in various ecosystems and organisms. Over the past decades, there has been a notable increase in the identification and generation of both wild-type and genetically modified microbial strains from research laboratories worldwide. However, a substantial portion of the information represented in these strains remains scattered across the scientific literature. To facilitate the work of future researchers, in this perspective article, we advocate the adoption of the DNA-based natural language (DBNL) algorithm standard and then demonstrate it using a <em>Streptomyces</em> species as a proof of concept. This standard enables the sophisticated genome sequencing and subsequent extraction of valuable information encoded within a particular microbial species. In addition, it allows the access of such information for the continued research and applications even if a currently cultivated microbe cannot be cultured in the future. Embracing the DBNL algorithm standard promises to enhance the efficiency and effectiveness of microbial research, paving the way for innovative solutions and discoveries in diverse fields.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 11","pages":" 2377-2383"},"PeriodicalIF":6.2000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/dd/d4dd00251b?page=search","citationCount":"0","resultStr":"{\"title\":\"Embedding DNA-based natural language in microbes for the benefit of future researchers†\",\"authors\":\"Heqian Zhang, Jiaquan Huang, Xiaoyu Wang, Zhizeng Gao, Song Meng, Hang Li, Shanshan Zhou, Shang Wang, Shan Wang, Xunyou Yan, Xinwei Yang, Xiaoluo Huang and Zhiwei Qin\",\"doi\":\"10.1039/D4DD00251B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Microorganisms are valuable resources as antibiotic producers, biocontrol agents, and symbiotic agents in various ecosystems and organisms. Over the past decades, there has been a notable increase in the identification and generation of both wild-type and genetically modified microbial strains from research laboratories worldwide. However, a substantial portion of the information represented in these strains remains scattered across the scientific literature. To facilitate the work of future researchers, in this perspective article, we advocate the adoption of the DNA-based natural language (DBNL) algorithm standard and then demonstrate it using a <em>Streptomyces</em> species as a proof of concept. This standard enables the sophisticated genome sequencing and subsequent extraction of valuable information encoded within a particular microbial species. In addition, it allows the access of such information for the continued research and applications even if a currently cultivated microbe cannot be cultured in the future. Embracing the DBNL algorithm standard promises to enhance the efficiency and effectiveness of microbial research, paving the way for innovative solutions and discoveries in diverse fields.</p>\",\"PeriodicalId\":72816,\"journal\":{\"name\":\"Digital discovery\",\"volume\":\" 11\",\"pages\":\" 2377-2383\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/dd/d4dd00251b?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/dd/d4dd00251b\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/dd/d4dd00251b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

微生物是各种生态系统和生物体中的抗生素生产者、生物控制剂和共生剂,是宝贵的资源。过去几十年来,世界各地研究实验室鉴定和产生的野生型和转基因微生物菌株显著增加。然而,这些菌株所代表的大量信息仍然散见于科学文献中。为了促进未来研究人员的工作,我们在这篇视角文章中提倡采用基于 DNA 的自然语言(DBNL)算法标准,然后用一个链霉菌物种作为概念验证进行了演示。该标准可以进行复杂的基因组测序,随后提取特定微生物物种中编码的宝贵信息。此外,即使目前培养的微生物将来无法再培养,也能获取这些信息,用于继续研究和应用。采用 DBNL 算法标准有望提高微生物研究的效率和效果,为不同领域的创新解决方案和发现铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Embedding DNA-based natural language in microbes for the benefit of future researchers†

Microorganisms are valuable resources as antibiotic producers, biocontrol agents, and symbiotic agents in various ecosystems and organisms. Over the past decades, there has been a notable increase in the identification and generation of both wild-type and genetically modified microbial strains from research laboratories worldwide. However, a substantial portion of the information represented in these strains remains scattered across the scientific literature. To facilitate the work of future researchers, in this perspective article, we advocate the adoption of the DNA-based natural language (DBNL) algorithm standard and then demonstrate it using a Streptomyces species as a proof of concept. This standard enables the sophisticated genome sequencing and subsequent extraction of valuable information encoded within a particular microbial species. In addition, it allows the access of such information for the continued research and applications even if a currently cultivated microbe cannot be cultured in the future. Embracing the DBNL algorithm standard promises to enhance the efficiency and effectiveness of microbial research, paving the way for innovative solutions and discoveries in diverse fields.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
期刊最新文献
Back cover ArcaNN: automated enhanced sampling generation of training sets for chemically reactive machine learning interatomic potentials. Sorting polyolefins with near-infrared spectroscopy: identification of optimal data analysis pipelines and machine learning classifiers†‡ High accuracy uncertainty-aware interatomic force modeling with equivariant Bayesian neural networks† Correction: A smile is all you need: predicting limiting activity coefficients from SMILES with natural language processing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1