{"title":"冷冻食人黑暗区","authors":"Esau Cervantes, Andrzej Hryczuk","doi":"10.1007/JHEP11(2024)050","DOIUrl":null,"url":null,"abstract":"<p>Self-Interacting Dark Matter models can successfully explain dark matter (DM) production through interactions confined within the dark sector. However, they often lack measurable experimental signals due to their secluded nature. Including a feeble interaction with the visible sector through a Higgs portal leads not only to potential detection avenues and richer thermal production dynamics, but also to a possible explanation of the initial dark sector population through the freeze-in mechanism. In this work we study, by solving the full system of coupled Boltzmann equations for the number densities and temperatures of all the involved states, three scenarios of this type where the DM is: a real scalar with broken ℤ<sub>2</sub>, a complex scalar with unbroken ℤ<sub>3</sub>, and a ℤ<sub>3</sub> scalar with an additional scalar mediator. All of these models have viable dark matter candidates in a cannibal phase while having different detection profiles. We show that cosmological bounds can be either exacerbated or evaded by changing the dark sector interactions, leading to potential signatures in long-lived particle and indirect detection experiments.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2024 11","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP11(2024)050.pdf","citationCount":"0","resultStr":"{\"title\":\"Freezing-in cannibal dark sectors\",\"authors\":\"Esau Cervantes, Andrzej Hryczuk\",\"doi\":\"10.1007/JHEP11(2024)050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Self-Interacting Dark Matter models can successfully explain dark matter (DM) production through interactions confined within the dark sector. However, they often lack measurable experimental signals due to their secluded nature. Including a feeble interaction with the visible sector through a Higgs portal leads not only to potential detection avenues and richer thermal production dynamics, but also to a possible explanation of the initial dark sector population through the freeze-in mechanism. In this work we study, by solving the full system of coupled Boltzmann equations for the number densities and temperatures of all the involved states, three scenarios of this type where the DM is: a real scalar with broken ℤ<sub>2</sub>, a complex scalar with unbroken ℤ<sub>3</sub>, and a ℤ<sub>3</sub> scalar with an additional scalar mediator. All of these models have viable dark matter candidates in a cannibal phase while having different detection profiles. We show that cosmological bounds can be either exacerbated or evaded by changing the dark sector interactions, leading to potential signatures in long-lived particle and indirect detection experiments.</p>\",\"PeriodicalId\":635,\"journal\":{\"name\":\"Journal of High Energy Physics\",\"volume\":\"2024 11\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/JHEP11(2024)050.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/JHEP11(2024)050\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP11(2024)050","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Self-Interacting Dark Matter models can successfully explain dark matter (DM) production through interactions confined within the dark sector. However, they often lack measurable experimental signals due to their secluded nature. Including a feeble interaction with the visible sector through a Higgs portal leads not only to potential detection avenues and richer thermal production dynamics, but also to a possible explanation of the initial dark sector population through the freeze-in mechanism. In this work we study, by solving the full system of coupled Boltzmann equations for the number densities and temperatures of all the involved states, three scenarios of this type where the DM is: a real scalar with broken ℤ2, a complex scalar with unbroken ℤ3, and a ℤ3 scalar with an additional scalar mediator. All of these models have viable dark matter candidates in a cannibal phase while having different detection profiles. We show that cosmological bounds can be either exacerbated or evaded by changing the dark sector interactions, leading to potential signatures in long-lived particle and indirect detection experiments.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).