{"title":"用于医疗诊断的深度学习模型的鲁棒性:实现鲁棒人工智能应用的安全性和对抗性挑战","authors":"Haseeb Javed, Shaker El-Sappagh, Tamer Abuhmed","doi":"10.1007/s10462-024-11005-9","DOIUrl":null,"url":null,"abstract":"<div><p>The current study investigates the robustness of deep learning models for accurate medical diagnosis systems with a specific focus on their ability to maintain performance in the presence of adversarial or noisy inputs. We examine factors that may influence model reliability, including model complexity, training data quality, and hyperparameters; we also examine security concerns related to adversarial attacks that aim to deceive models along with privacy attacks that seek to extract sensitive information. Researchers have discussed various defenses to these attacks to enhance model robustness, such as adversarial training and input preprocessing, along with mechanisms like data augmentation and uncertainty estimation. Tools and packages that extend the reliability features of deep learning frameworks such as TensorFlow and PyTorch are also being explored and evaluated. Existing evaluation metrics for robustness are additionally being discussed and evaluated. This paper concludes by discussing limitations in the existing literature and possible future research directions to continue enhancing the status of this research topic, particularly in the medical domain, with the aim of ensuring that AI systems are trustworthy, reliable, and stable.</p></div>","PeriodicalId":8449,"journal":{"name":"Artificial Intelligence Review","volume":"58 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10462-024-11005-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Robustness in deep learning models for medical diagnostics: security and adversarial challenges towards robust AI applications\",\"authors\":\"Haseeb Javed, Shaker El-Sappagh, Tamer Abuhmed\",\"doi\":\"10.1007/s10462-024-11005-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The current study investigates the robustness of deep learning models for accurate medical diagnosis systems with a specific focus on their ability to maintain performance in the presence of adversarial or noisy inputs. We examine factors that may influence model reliability, including model complexity, training data quality, and hyperparameters; we also examine security concerns related to adversarial attacks that aim to deceive models along with privacy attacks that seek to extract sensitive information. Researchers have discussed various defenses to these attacks to enhance model robustness, such as adversarial training and input preprocessing, along with mechanisms like data augmentation and uncertainty estimation. Tools and packages that extend the reliability features of deep learning frameworks such as TensorFlow and PyTorch are also being explored and evaluated. Existing evaluation metrics for robustness are additionally being discussed and evaluated. This paper concludes by discussing limitations in the existing literature and possible future research directions to continue enhancing the status of this research topic, particularly in the medical domain, with the aim of ensuring that AI systems are trustworthy, reliable, and stable.</p></div>\",\"PeriodicalId\":8449,\"journal\":{\"name\":\"Artificial Intelligence Review\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10462-024-11005-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence Review\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10462-024-11005-9\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Review","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10462-024-11005-9","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Robustness in deep learning models for medical diagnostics: security and adversarial challenges towards robust AI applications
The current study investigates the robustness of deep learning models for accurate medical diagnosis systems with a specific focus on their ability to maintain performance in the presence of adversarial or noisy inputs. We examine factors that may influence model reliability, including model complexity, training data quality, and hyperparameters; we also examine security concerns related to adversarial attacks that aim to deceive models along with privacy attacks that seek to extract sensitive information. Researchers have discussed various defenses to these attacks to enhance model robustness, such as adversarial training and input preprocessing, along with mechanisms like data augmentation and uncertainty estimation. Tools and packages that extend the reliability features of deep learning frameworks such as TensorFlow and PyTorch are also being explored and evaluated. Existing evaluation metrics for robustness are additionally being discussed and evaluated. This paper concludes by discussing limitations in the existing literature and possible future research directions to continue enhancing the status of this research topic, particularly in the medical domain, with the aim of ensuring that AI systems are trustworthy, reliable, and stable.
期刊介绍:
Artificial Intelligence Review, a fully open access journal, publishes cutting-edge research in artificial intelligence and cognitive science. It features critical evaluations of applications, techniques, and algorithms, providing a platform for both researchers and application developers. The journal includes refereed survey and tutorial articles, along with reviews and commentary on significant developments in the field.