M. V. Polovets, S. A. Zagainov, K. B. Pykhteeva, E. A. Sidorov, A. M. Bizhanov
{"title":"在钒铸铁生产中减少二氧化碳排放的可行方向","authors":"M. V. Polovets, S. A. Zagainov, K. B. Pykhteeva, E. A. Sidorov, A. M. Bizhanov","doi":"10.1007/s11015-024-01786-3","DOIUrl":null,"url":null,"abstract":"<div><p>The current stage of development in metallurgy is characterized by unprecedented attention to reducing CO<sub>2</sub> emissions. Replacement of carbon with hydrogen in smelting of cast iron is a method of reducing CO<sub>2</sub> emissions; however, the production of hydrogen is also associated with CO<sub>2</sub> emissions. The carbon monoxide utilization rate during indirect reduction in a blast furnace is 28–38%, in contrast to direct reduction, in which the utilization rate is more dependent on contact area between the reducing agent and oxides. Use of ore-coal briquettes is a promising direction for increasing the utilization rate of the reducing power of carbon in a blast furnace. The study investigates the efficiency of using ore-coal briquettes in production of vanadium cast iron from the perspective of reducing CO<sub>2</sub> emissions. We show that carbon consumption for direct reduction of titanium-magnetite concentrate is six times lower than for indirect reduction. Using ore-coal briquettes in blast furnace charge can reduce the specific fuel carbon consumption in production of vanadium cast iron, which will reduce CO<sub>2</sub> emissions.</p></div>","PeriodicalId":702,"journal":{"name":"Metallurgist","volume":"68 6","pages":"796 - 802"},"PeriodicalIF":0.8000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Promising directions for reducing CO2 emissions in production of vanadium cast iron\",\"authors\":\"M. V. Polovets, S. A. Zagainov, K. B. Pykhteeva, E. A. Sidorov, A. M. Bizhanov\",\"doi\":\"10.1007/s11015-024-01786-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The current stage of development in metallurgy is characterized by unprecedented attention to reducing CO<sub>2</sub> emissions. Replacement of carbon with hydrogen in smelting of cast iron is a method of reducing CO<sub>2</sub> emissions; however, the production of hydrogen is also associated with CO<sub>2</sub> emissions. The carbon monoxide utilization rate during indirect reduction in a blast furnace is 28–38%, in contrast to direct reduction, in which the utilization rate is more dependent on contact area between the reducing agent and oxides. Use of ore-coal briquettes is a promising direction for increasing the utilization rate of the reducing power of carbon in a blast furnace. The study investigates the efficiency of using ore-coal briquettes in production of vanadium cast iron from the perspective of reducing CO<sub>2</sub> emissions. We show that carbon consumption for direct reduction of titanium-magnetite concentrate is six times lower than for indirect reduction. Using ore-coal briquettes in blast furnace charge can reduce the specific fuel carbon consumption in production of vanadium cast iron, which will reduce CO<sub>2</sub> emissions.</p></div>\",\"PeriodicalId\":702,\"journal\":{\"name\":\"Metallurgist\",\"volume\":\"68 6\",\"pages\":\"796 - 802\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallurgist\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11015-024-01786-3\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgist","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11015-024-01786-3","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Promising directions for reducing CO2 emissions in production of vanadium cast iron
The current stage of development in metallurgy is characterized by unprecedented attention to reducing CO2 emissions. Replacement of carbon with hydrogen in smelting of cast iron is a method of reducing CO2 emissions; however, the production of hydrogen is also associated with CO2 emissions. The carbon monoxide utilization rate during indirect reduction in a blast furnace is 28–38%, in contrast to direct reduction, in which the utilization rate is more dependent on contact area between the reducing agent and oxides. Use of ore-coal briquettes is a promising direction for increasing the utilization rate of the reducing power of carbon in a blast furnace. The study investigates the efficiency of using ore-coal briquettes in production of vanadium cast iron from the perspective of reducing CO2 emissions. We show that carbon consumption for direct reduction of titanium-magnetite concentrate is six times lower than for indirect reduction. Using ore-coal briquettes in blast furnace charge can reduce the specific fuel carbon consumption in production of vanadium cast iron, which will reduce CO2 emissions.
期刊介绍:
Metallurgist is the leading Russian journal in metallurgy. Publication started in 1956.
Basic topics covered include:
State of the art and development of enterprises in ferrous and nonferrous metallurgy and mining;
Metallurgy of ferrous, nonferrous, rare, and precious metals; Metallurgical equipment;
Automation and control;
Protection of labor;
Protection of the environment;
Resources and energy saving;
Quality and certification;
History of metallurgy;
Inventions (patents).