{"title":"序列粗糙集:帕夫拉克经典粗糙集的保守扩展","authors":"Wenyan Xu, Yucong Yan, Xiaonan Li","doi":"10.1007/s10462-024-10976-z","DOIUrl":null,"url":null,"abstract":"<div><p>Rough set theory is an important approach to deal with uncertainty in data mining. However, Pawlak’s classical rough set has low fault-tolerance on concept approximation based on knowledge granules, which may influence the classification accuracy in practical application. To address this problem, the present paper proposes a novel sequential rough-set model that is proved to be a conservative extension of Pawlak’s classical rough set. As a result, it effectively improves the fault-tolerance ability, classification accuracy and concept approximation accuracy of the latter without any additional assumption. Based on the properties and theoretical analysis of the proposed model, an algorithm is presented to automatically determine the sequential thresholds and compute the three regions for the given concept. Experiments on real data verify the validity of the algorithm, and also show the stable improvement on the two types of accuracy.</p></div>","PeriodicalId":8449,"journal":{"name":"Artificial Intelligence Review","volume":"58 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10462-024-10976-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Sequential rough set: a conservative extension of Pawlak’s classical rough set\",\"authors\":\"Wenyan Xu, Yucong Yan, Xiaonan Li\",\"doi\":\"10.1007/s10462-024-10976-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Rough set theory is an important approach to deal with uncertainty in data mining. However, Pawlak’s classical rough set has low fault-tolerance on concept approximation based on knowledge granules, which may influence the classification accuracy in practical application. To address this problem, the present paper proposes a novel sequential rough-set model that is proved to be a conservative extension of Pawlak’s classical rough set. As a result, it effectively improves the fault-tolerance ability, classification accuracy and concept approximation accuracy of the latter without any additional assumption. Based on the properties and theoretical analysis of the proposed model, an algorithm is presented to automatically determine the sequential thresholds and compute the three regions for the given concept. Experiments on real data verify the validity of the algorithm, and also show the stable improvement on the two types of accuracy.</p></div>\",\"PeriodicalId\":8449,\"journal\":{\"name\":\"Artificial Intelligence Review\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10462-024-10976-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence Review\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10462-024-10976-z\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Review","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10462-024-10976-z","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Sequential rough set: a conservative extension of Pawlak’s classical rough set
Rough set theory is an important approach to deal with uncertainty in data mining. However, Pawlak’s classical rough set has low fault-tolerance on concept approximation based on knowledge granules, which may influence the classification accuracy in practical application. To address this problem, the present paper proposes a novel sequential rough-set model that is proved to be a conservative extension of Pawlak’s classical rough set. As a result, it effectively improves the fault-tolerance ability, classification accuracy and concept approximation accuracy of the latter without any additional assumption. Based on the properties and theoretical analysis of the proposed model, an algorithm is presented to automatically determine the sequential thresholds and compute the three regions for the given concept. Experiments on real data verify the validity of the algorithm, and also show the stable improvement on the two types of accuracy.
期刊介绍:
Artificial Intelligence Review, a fully open access journal, publishes cutting-edge research in artificial intelligence and cognitive science. It features critical evaluations of applications, techniques, and algorithms, providing a platform for both researchers and application developers. The journal includes refereed survey and tutorial articles, along with reviews and commentary on significant developments in the field.