{"title":"考虑到应变、应力和温度的空间不均匀性的滑动过程中冰表面软化的非线性模型","authors":"Alexei Khomenko, Denys Lohvynenko, Kateryna Khomenko, Yaroslava Khyzhnya","doi":"10.1007/s00419-024-02698-z","DOIUrl":null,"url":null,"abstract":"<div><p>The model of ice surface softening is represented by a system of three one-dimensional partial differential parabolic equations, taking into account the spatial inhomogeneity. Using one-mode and adiabatic approximations, an analytical soliton solution of a one-dimensional Ginzburg–Landau differential equation for the spatial normal distribution of shear strain to the ice surface is obtained. The analytical form of the numerical procedure for solving the equations, including initial and boundary conditions, is written on the basis of an explicit two-layer difference scheme. The distributions of time and stationary values of static friction force, kinetic friction force and temperature are constructed. Two cases were considered: 1) the upper and lower surfaces move with equal velocities in opposite directions; 2) the upper surface moves along the stationary lower surface. The dependencies of stress, strain and temperature on the coordinate in the normal direction to the surface are determined for different time series. It is shown that a stationary distribution of friction forces and temperature along the thickness of the near-surface ice layer is established with time. The values of the kinetic and static friction forces in the near-surface ice layer increase monotonically with distance from the friction surfaces, while the coordinate dependence of the temperature has a nonmonotonic appearance. The stationary values of the static friction force in the near-surface ice layer decrease with increasing temperature of the friction surfaces, indicating that the surface transforms to a more liquid-like state, while the coordinate dependence has a monotonically increasing form.</p></div>","PeriodicalId":477,"journal":{"name":"Archive of Applied Mechanics","volume":"94 12","pages":"3849 - 3859"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear model of ice surface softening during sliding taking into account spatial inhomogeneity of strain, stress and temperature\",\"authors\":\"Alexei Khomenko, Denys Lohvynenko, Kateryna Khomenko, Yaroslava Khyzhnya\",\"doi\":\"10.1007/s00419-024-02698-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The model of ice surface softening is represented by a system of three one-dimensional partial differential parabolic equations, taking into account the spatial inhomogeneity. Using one-mode and adiabatic approximations, an analytical soliton solution of a one-dimensional Ginzburg–Landau differential equation for the spatial normal distribution of shear strain to the ice surface is obtained. The analytical form of the numerical procedure for solving the equations, including initial and boundary conditions, is written on the basis of an explicit two-layer difference scheme. The distributions of time and stationary values of static friction force, kinetic friction force and temperature are constructed. Two cases were considered: 1) the upper and lower surfaces move with equal velocities in opposite directions; 2) the upper surface moves along the stationary lower surface. The dependencies of stress, strain and temperature on the coordinate in the normal direction to the surface are determined for different time series. It is shown that a stationary distribution of friction forces and temperature along the thickness of the near-surface ice layer is established with time. The values of the kinetic and static friction forces in the near-surface ice layer increase monotonically with distance from the friction surfaces, while the coordinate dependence of the temperature has a nonmonotonic appearance. The stationary values of the static friction force in the near-surface ice layer decrease with increasing temperature of the friction surfaces, indicating that the surface transforms to a more liquid-like state, while the coordinate dependence has a monotonically increasing form.</p></div>\",\"PeriodicalId\":477,\"journal\":{\"name\":\"Archive of Applied Mechanics\",\"volume\":\"94 12\",\"pages\":\"3849 - 3859\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive of Applied Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00419-024-02698-z\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive of Applied Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00419-024-02698-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Nonlinear model of ice surface softening during sliding taking into account spatial inhomogeneity of strain, stress and temperature
The model of ice surface softening is represented by a system of three one-dimensional partial differential parabolic equations, taking into account the spatial inhomogeneity. Using one-mode and adiabatic approximations, an analytical soliton solution of a one-dimensional Ginzburg–Landau differential equation for the spatial normal distribution of shear strain to the ice surface is obtained. The analytical form of the numerical procedure for solving the equations, including initial and boundary conditions, is written on the basis of an explicit two-layer difference scheme. The distributions of time and stationary values of static friction force, kinetic friction force and temperature are constructed. Two cases were considered: 1) the upper and lower surfaces move with equal velocities in opposite directions; 2) the upper surface moves along the stationary lower surface. The dependencies of stress, strain and temperature on the coordinate in the normal direction to the surface are determined for different time series. It is shown that a stationary distribution of friction forces and temperature along the thickness of the near-surface ice layer is established with time. The values of the kinetic and static friction forces in the near-surface ice layer increase monotonically with distance from the friction surfaces, while the coordinate dependence of the temperature has a nonmonotonic appearance. The stationary values of the static friction force in the near-surface ice layer decrease with increasing temperature of the friction surfaces, indicating that the surface transforms to a more liquid-like state, while the coordinate dependence has a monotonically increasing form.
期刊介绍:
Archive of Applied Mechanics serves as a platform to communicate original research of scholarly value in all branches of theoretical and applied mechanics, i.e., in solid and fluid mechanics, dynamics and vibrations. It focuses on continuum mechanics in general, structural mechanics, biomechanics, micro- and nano-mechanics as well as hydrodynamics. In particular, the following topics are emphasised: thermodynamics of materials, material modeling, multi-physics, mechanical properties of materials, homogenisation, phase transitions, fracture and damage mechanics, vibration, wave propagation experimental mechanics as well as machine learning techniques in the context of applied mechanics.