从静止到喷发:我们应该如何预测火山爆发

J. Martí
{"title":"从静止到喷发:我们应该如何预测火山爆发","authors":"J. Martí","doi":"10.1038/s44304-024-00033-8","DOIUrl":null,"url":null,"abstract":"Volcanic eruptions are typically preceded by unrest, marked by increased seismicity, ground deformation, and gas emissions. Unrest can last from decades to minutes. Accurate eruption forecasting relies on real-time monitoring and understanding the volcano’s past behavior. Long-term hazard assessments, combined with real-time data, help identify probable eruptive scenarios (short-term hazard assessment), improving forecasting during volcanic crises.","PeriodicalId":501712,"journal":{"name":"npj Natural Hazards","volume":" ","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44304-024-00033-8.pdf","citationCount":"0","resultStr":"{\"title\":\"From rest to eruption: How we should anticipate volcanic eruptions\",\"authors\":\"J. Martí\",\"doi\":\"10.1038/s44304-024-00033-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Volcanic eruptions are typically preceded by unrest, marked by increased seismicity, ground deformation, and gas emissions. Unrest can last from decades to minutes. Accurate eruption forecasting relies on real-time monitoring and understanding the volcano’s past behavior. Long-term hazard assessments, combined with real-time data, help identify probable eruptive scenarios (short-term hazard assessment), improving forecasting during volcanic crises.\",\"PeriodicalId\":501712,\"journal\":{\"name\":\"npj Natural Hazards\",\"volume\":\" \",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s44304-024-00033-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Natural Hazards\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44304-024-00033-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Natural Hazards","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44304-024-00033-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

火山爆发前通常会发生动乱,其特点是地震、地面变形和气体排放增加。动乱可持续数十年至数分钟不等。准确的火山爆发预报依赖于实时监测和对火山过去行为的了解。长期危害评估与实时数据相结合,有助于确定可能的喷发情况(短期危害评估),从而改进火山危机期间的预报。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
From rest to eruption: How we should anticipate volcanic eruptions
Volcanic eruptions are typically preceded by unrest, marked by increased seismicity, ground deformation, and gas emissions. Unrest can last from decades to minutes. Accurate eruption forecasting relies on real-time monitoring and understanding the volcano’s past behavior. Long-term hazard assessments, combined with real-time data, help identify probable eruptive scenarios (short-term hazard assessment), improving forecasting during volcanic crises.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Debris flows in the northern Tien Shan, Central Asia: regional database, meteorological triggers, and trends Adaptation portfolio – a multi-measure framework for future floods and droughts Earthquakes yes, disasters no Bayesian estimation of the likelihood of extreme hail sizes over the United States Climate change exacerbates compound flooding from recent tropical cyclones
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1