{"title":"用于新兴市场两轮和三轮电动车的锌空气机械充电电池","authors":"Akhil Kongara, Arun Kumar Samuel, Gunjan Kapadia, Aravind Kumar Chandiran","doi":"10.1038/s43246-024-00662-6","DOIUrl":null,"url":null,"abstract":"Mechanically rechargeable zinc-air batteries are considered promising for powering electric vehicles due to their high theoretical energy density, but a few practical hurdles impede their implementation. Understanding the key technical blockades that restrict their implementation will enable quick deployment of these batteries in electric vehicles. This Review analyzes the performance of various on-road electric vehicle segments powered by lithium-ion batteries and compares this with the current rechargeable zinc-air battery development. We discuss the theoretical limits and vehicle-specific blockades involved in achieving the performance of mechanically rechargeable zinc-air battery-powered electric vehicles, equivalent to those powered by lithium-ion batteries. Based on the identified blockades, we present ideas on future research direction on positive and negative electrodes, and battery operation and architecture. Finally, we discuss the conditions under which these batteries can be implemented in various electric vehicle segments. Mechanically rechargeable zinc-air batteries are promising for powering electric vehicles but their implementation is restricted. This Review analyzes the performance of lithium-ion battery-powered electric vehicles and applies these thoughts to vehicles powered by rechargeable zinc-air batteries.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-16"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00662-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Mechanically rechargeable zinc-air batteries for two- and three-wheeler electric vehicles in emerging markets\",\"authors\":\"Akhil Kongara, Arun Kumar Samuel, Gunjan Kapadia, Aravind Kumar Chandiran\",\"doi\":\"10.1038/s43246-024-00662-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mechanically rechargeable zinc-air batteries are considered promising for powering electric vehicles due to their high theoretical energy density, but a few practical hurdles impede their implementation. Understanding the key technical blockades that restrict their implementation will enable quick deployment of these batteries in electric vehicles. This Review analyzes the performance of various on-road electric vehicle segments powered by lithium-ion batteries and compares this with the current rechargeable zinc-air battery development. We discuss the theoretical limits and vehicle-specific blockades involved in achieving the performance of mechanically rechargeable zinc-air battery-powered electric vehicles, equivalent to those powered by lithium-ion batteries. Based on the identified blockades, we present ideas on future research direction on positive and negative electrodes, and battery operation and architecture. Finally, we discuss the conditions under which these batteries can be implemented in various electric vehicle segments. Mechanically rechargeable zinc-air batteries are promising for powering electric vehicles but their implementation is restricted. This Review analyzes the performance of lithium-ion battery-powered electric vehicles and applies these thoughts to vehicles powered by rechargeable zinc-air batteries.\",\"PeriodicalId\":10589,\"journal\":{\"name\":\"Communications Materials\",\"volume\":\" \",\"pages\":\"1-16\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s43246-024-00662-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43246-024-00662-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00662-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Mechanically rechargeable zinc-air batteries for two- and three-wheeler electric vehicles in emerging markets
Mechanically rechargeable zinc-air batteries are considered promising for powering electric vehicles due to their high theoretical energy density, but a few practical hurdles impede their implementation. Understanding the key technical blockades that restrict their implementation will enable quick deployment of these batteries in electric vehicles. This Review analyzes the performance of various on-road electric vehicle segments powered by lithium-ion batteries and compares this with the current rechargeable zinc-air battery development. We discuss the theoretical limits and vehicle-specific blockades involved in achieving the performance of mechanically rechargeable zinc-air battery-powered electric vehicles, equivalent to those powered by lithium-ion batteries. Based on the identified blockades, we present ideas on future research direction on positive and negative electrodes, and battery operation and architecture. Finally, we discuss the conditions under which these batteries can be implemented in various electric vehicle segments. Mechanically rechargeable zinc-air batteries are promising for powering electric vehicles but their implementation is restricted. This Review analyzes the performance of lithium-ion battery-powered electric vehicles and applies these thoughts to vehicles powered by rechargeable zinc-air batteries.
期刊介绍:
Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.