用于胶质母细胞瘤靶向催化免疫疗法的仿生双驱动异质结纳米马达

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-11-09 DOI:10.1002/adfm.202416265
Jiamin Ye, Yueyue Fan, Yong Kang, Mengbin Ding, Gaoli Niu, Jinmei Yang, Ruiyan Li, Xiaoli Wu, Peng Liu, Xiaoyuan Ji
{"title":"用于胶质母细胞瘤靶向催化免疫疗法的仿生双驱动异质结纳米马达","authors":"Jiamin Ye, Yueyue Fan, Yong Kang, Mengbin Ding, Gaoli Niu, Jinmei Yang, Ruiyan Li, Xiaoli Wu, Peng Liu, Xiaoyuan Ji","doi":"10.1002/adfm.202416265","DOIUrl":null,"url":null,"abstract":"The existence of the blood–brain barrier (BBB) and the characteristics of the immunosuppressive microenvironment in glioblastoma (GBM) present significant challenges for targeted GBM therapy. To address this, a biomimetic hybrid cell membrane‐modified dual‐driven heterojunction nanomotor (HM@MnO<jats:sub>2</jats:sub>‐AuNR‐SiO<jats:sub>2</jats:sub>) is proposed for targeted GBM treatment. These nanomotors are designed to bypass the BBB and target glioma regions by mimicking the surface characteristics of GBM and macrophage membranes. More importantly, the MnO<jats:sub>2</jats:sub>‐AuNR‐SiO<jats:sub>2</jats:sub> heterojunction structure enables dual‐driven propulsion through near‐infrared‐II (NIR‐II) light and oxygen bubbles, allowing effective treatment at deep tumor sites. Meanwhile, the plasmonic AuNR‐MnO<jats:sub>2</jats:sub> heterostructure facilitates the separation of electron–hole pairs and generates reactive oxygen species (ROS), inducing immunogenic tumor cell death under NIR‐II laser irradiation. Furthermore, MnO<jats:sub>2</jats:sub> in the tumor microenvironment reacts to release Mn<jats:sup>2+</jats:sup> ions, activating the cGAS‐STING pathway and enhancing antitumor immunity. In vitro and in vivo experiments demonstrate that these dual‐driven biomimetic nanomotors achieve active targeting and deep tumor infiltration, promoting M1 macrophage polarization, dendritic cell maturation, and effector T‐cell activation, thereby enhancing GBM catalysis and immunotherapy through ROS production and STING pathway activation.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"45 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biomimetic Dual‐Driven Heterojunction Nanomotors for Targeted Catalytic Immunotherapy of Glioblastoma\",\"authors\":\"Jiamin Ye, Yueyue Fan, Yong Kang, Mengbin Ding, Gaoli Niu, Jinmei Yang, Ruiyan Li, Xiaoli Wu, Peng Liu, Xiaoyuan Ji\",\"doi\":\"10.1002/adfm.202416265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The existence of the blood–brain barrier (BBB) and the characteristics of the immunosuppressive microenvironment in glioblastoma (GBM) present significant challenges for targeted GBM therapy. To address this, a biomimetic hybrid cell membrane‐modified dual‐driven heterojunction nanomotor (HM@MnO<jats:sub>2</jats:sub>‐AuNR‐SiO<jats:sub>2</jats:sub>) is proposed for targeted GBM treatment. These nanomotors are designed to bypass the BBB and target glioma regions by mimicking the surface characteristics of GBM and macrophage membranes. More importantly, the MnO<jats:sub>2</jats:sub>‐AuNR‐SiO<jats:sub>2</jats:sub> heterojunction structure enables dual‐driven propulsion through near‐infrared‐II (NIR‐II) light and oxygen bubbles, allowing effective treatment at deep tumor sites. Meanwhile, the plasmonic AuNR‐MnO<jats:sub>2</jats:sub> heterostructure facilitates the separation of electron–hole pairs and generates reactive oxygen species (ROS), inducing immunogenic tumor cell death under NIR‐II laser irradiation. Furthermore, MnO<jats:sub>2</jats:sub> in the tumor microenvironment reacts to release Mn<jats:sup>2+</jats:sup> ions, activating the cGAS‐STING pathway and enhancing antitumor immunity. In vitro and in vivo experiments demonstrate that these dual‐driven biomimetic nanomotors achieve active targeting and deep tumor infiltration, promoting M1 macrophage polarization, dendritic cell maturation, and effector T‐cell activation, thereby enhancing GBM catalysis and immunotherapy through ROS production and STING pathway activation.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202416265\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202416265","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

胶质母细胞瘤(GBM)中血脑屏障(BBB)的存在和免疫抑制微环境的特点为GBM的靶向治疗带来了重大挑战。为解决这一问题,我们提出了一种用于 GBM 靶向治疗的仿生混合细胞膜修饰双驱动异质结纳米马达(HM@MnO2-AuNR-SiO2)。这些纳米马达通过模仿 GBM 和巨噬细胞膜的表面特征,可绕过 BBB 并靶向胶质瘤区域。更重要的是,MnO2-AuNR-SiO2 异质结结构可通过近红外-II(NIR-II)光和氧气泡实现双驱动推进,从而有效治疗深部肿瘤部位。同时,等离子体 AuNR-MnO2 异质结结构可促进电子-空穴对的分离,并产生活性氧(ROS),在近红外-II 激光照射下诱导免疫性肿瘤细胞死亡。此外,肿瘤微环境中的二氧化锰会发生反应,释放出 Mn2+ 离子,激活 cGAS-STING 通路,增强抗肿瘤免疫力。体外和体内实验证明,这些双驱动生物仿生纳米马达可实现主动靶向和肿瘤深层浸润,促进 M1 巨噬细胞极化、树突状细胞成熟和效应 T 细胞活化,从而通过产生 ROS 和激活 STING 通路增强 GBM 催化和免疫治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Biomimetic Dual‐Driven Heterojunction Nanomotors for Targeted Catalytic Immunotherapy of Glioblastoma
The existence of the blood–brain barrier (BBB) and the characteristics of the immunosuppressive microenvironment in glioblastoma (GBM) present significant challenges for targeted GBM therapy. To address this, a biomimetic hybrid cell membrane‐modified dual‐driven heterojunction nanomotor (HM@MnO2‐AuNR‐SiO2) is proposed for targeted GBM treatment. These nanomotors are designed to bypass the BBB and target glioma regions by mimicking the surface characteristics of GBM and macrophage membranes. More importantly, the MnO2‐AuNR‐SiO2 heterojunction structure enables dual‐driven propulsion through near‐infrared‐II (NIR‐II) light and oxygen bubbles, allowing effective treatment at deep tumor sites. Meanwhile, the plasmonic AuNR‐MnO2 heterostructure facilitates the separation of electron–hole pairs and generates reactive oxygen species (ROS), inducing immunogenic tumor cell death under NIR‐II laser irradiation. Furthermore, MnO2 in the tumor microenvironment reacts to release Mn2+ ions, activating the cGAS‐STING pathway and enhancing antitumor immunity. In vitro and in vivo experiments demonstrate that these dual‐driven biomimetic nanomotors achieve active targeting and deep tumor infiltration, promoting M1 macrophage polarization, dendritic cell maturation, and effector T‐cell activation, thereby enhancing GBM catalysis and immunotherapy through ROS production and STING pathway activation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Precise Molecular Engineering of Multi-Suborganelle Targeted NIR Type‑I AIE Photosensitizer and Design of Cell Membrane-Anchored Anti-Tumor Pyroptosis Vaccine Wax-Casted Macroporous Polyamidoxime Hydrogel Particles Encapsulated in Alginate-Polyacrylic Acid Beads for Highly Efficient Uranium Capture from Seawater 3D Printing of Multiscale Biomimetic Scaffold for Tendon Regeneration Directly Printable and Adhesive Liquid Metal Ink for Wearable Devices Advanced Aerodynamics-Driven Energy Harvesting Leveraging Galloping-Flutter Synergy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1