{"title":"液体特性对浓缩二氧化硅悬浮液非牛顿流变学的影响:非连续剪切增稠、剪切堵塞和冲击吸收能力","authors":"Sadaki Samitsu, Ryota Tamate, Takeshi Ueki","doi":"10.1021/acs.langmuir.4c01547","DOIUrl":null,"url":null,"abstract":"Concentrated particle suspensions exhibit rheological behavior, such as discontinuous shear thickening (DST) and dynamic shear jamming (SJ), which affect applications such as soft armors. Although the origin of this behavior in shear-activated particle–particle interactions has been identified, the effect of chemical factors, especially the role of liquids, on this behavior remains unexplored. Hydrogen bonding in suspensions has been proposed to be essential for frictional contacts between particles, and therefore, most studies on DST and SJ have focused on aqueous and protic organic media with a definite hydrogen bonding ability. To identify an alternative molecular mechanism, this study explored the effects of liquid polarity and an aprotic nature on the rheological behavior of concentrated suspensions of silica microparticles. Owing to their excellent particle dispersion, the DST behavior of polar liquids was observed, independent of protic and aprotic liquids. In contrast, nonpolar liquids formed particle agglomerates because of the particle–particle attraction and became a paste at a high particle fraction. The SJ behavior was confirmed for three aprotic organic liquids (propylene carbonate, 1,3-dimethyl-2-imidazolidinone, and 1,3-dimethylpropyleneurea), suggesting the hydrogen bonding ability of these aprotic liquids. The diverse mechanisms of shear-activated interactions between particles present material design possibilities for the non-Newtonian rheology of concentrated particle suspensions.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Liquid Properties on the Non-Newtonian Rheology of Concentrated Silica Suspensions: Discontinuous Shear Thickening, Shear Jamming, and Shock Absorbance\",\"authors\":\"Sadaki Samitsu, Ryota Tamate, Takeshi Ueki\",\"doi\":\"10.1021/acs.langmuir.4c01547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Concentrated particle suspensions exhibit rheological behavior, such as discontinuous shear thickening (DST) and dynamic shear jamming (SJ), which affect applications such as soft armors. Although the origin of this behavior in shear-activated particle–particle interactions has been identified, the effect of chemical factors, especially the role of liquids, on this behavior remains unexplored. Hydrogen bonding in suspensions has been proposed to be essential for frictional contacts between particles, and therefore, most studies on DST and SJ have focused on aqueous and protic organic media with a definite hydrogen bonding ability. To identify an alternative molecular mechanism, this study explored the effects of liquid polarity and an aprotic nature on the rheological behavior of concentrated suspensions of silica microparticles. Owing to their excellent particle dispersion, the DST behavior of polar liquids was observed, independent of protic and aprotic liquids. In contrast, nonpolar liquids formed particle agglomerates because of the particle–particle attraction and became a paste at a high particle fraction. The SJ behavior was confirmed for three aprotic organic liquids (propylene carbonate, 1,3-dimethyl-2-imidazolidinone, and 1,3-dimethylpropyleneurea), suggesting the hydrogen bonding ability of these aprotic liquids. The diverse mechanisms of shear-activated interactions between particles present material design possibilities for the non-Newtonian rheology of concentrated particle suspensions.\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.langmuir.4c01547\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c01547","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Effect of Liquid Properties on the Non-Newtonian Rheology of Concentrated Silica Suspensions: Discontinuous Shear Thickening, Shear Jamming, and Shock Absorbance
Concentrated particle suspensions exhibit rheological behavior, such as discontinuous shear thickening (DST) and dynamic shear jamming (SJ), which affect applications such as soft armors. Although the origin of this behavior in shear-activated particle–particle interactions has been identified, the effect of chemical factors, especially the role of liquids, on this behavior remains unexplored. Hydrogen bonding in suspensions has been proposed to be essential for frictional contacts between particles, and therefore, most studies on DST and SJ have focused on aqueous and protic organic media with a definite hydrogen bonding ability. To identify an alternative molecular mechanism, this study explored the effects of liquid polarity and an aprotic nature on the rheological behavior of concentrated suspensions of silica microparticles. Owing to their excellent particle dispersion, the DST behavior of polar liquids was observed, independent of protic and aprotic liquids. In contrast, nonpolar liquids formed particle agglomerates because of the particle–particle attraction and became a paste at a high particle fraction. The SJ behavior was confirmed for three aprotic organic liquids (propylene carbonate, 1,3-dimethyl-2-imidazolidinone, and 1,3-dimethylpropyleneurea), suggesting the hydrogen bonding ability of these aprotic liquids. The diverse mechanisms of shear-activated interactions between particles present material design possibilities for the non-Newtonian rheology of concentrated particle suspensions.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).