一系列强效、选择性和药物样 G 蛋白偶联受体激酶 5 抑制剂的设计、合成和 X 射线结构研究

IF 6 2区 医学 Q1 CHEMISTRY, MEDICINAL European Journal of Medicinal Chemistry Pub Date : 2024-11-08 DOI:10.1016/j.ejmech.2024.117024
Arun K. Ghosh , Yueyi Chen , Ranjith Kumar Gadi , Amol Sonawane , Sandali Piladuwa Gamage , JohnJ.G. Tesmer
{"title":"一系列强效、选择性和药物样 G 蛋白偶联受体激酶 5 抑制剂的设计、合成和 X 射线结构研究","authors":"Arun K. Ghosh ,&nbsp;Yueyi Chen ,&nbsp;Ranjith Kumar Gadi ,&nbsp;Amol Sonawane ,&nbsp;Sandali Piladuwa Gamage ,&nbsp;JohnJ.G. Tesmer","doi":"10.1016/j.ejmech.2024.117024","DOIUrl":null,"url":null,"abstract":"<div><div>G protein-coupled receptor kinase 5 (GRK5) has emerged as a potential drug development target against heart failure and cancer. A close homolog, GRK6 represents a therapeutic target for multiple myeloma. We have rationally designed a series of highly selective, potent, noncovalent, and drug-like GRK5 inhibitors. Several inhibitors exhibited low nanomolar GRK5 inhibition and high selectivity over GRK2, and, surprisingly, some were selective for GRK6. We determined high-resolution X-ray crystal structures of several inhibitors in complex with GRK5, which provide molecular insights into the ligand-binding site interactions responsible for GRK5 selectivity and potency.</div></div>","PeriodicalId":314,"journal":{"name":"European Journal of Medicinal Chemistry","volume":"282 ","pages":"Article 117024"},"PeriodicalIF":6.0000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design, synthesis, and X-ray structural studies of a series of highly potent, selective, and drug-like G protein-coupled receptor kinase 5 inhibitors\",\"authors\":\"Arun K. Ghosh ,&nbsp;Yueyi Chen ,&nbsp;Ranjith Kumar Gadi ,&nbsp;Amol Sonawane ,&nbsp;Sandali Piladuwa Gamage ,&nbsp;JohnJ.G. Tesmer\",\"doi\":\"10.1016/j.ejmech.2024.117024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>G protein-coupled receptor kinase 5 (GRK5) has emerged as a potential drug development target against heart failure and cancer. A close homolog, GRK6 represents a therapeutic target for multiple myeloma. We have rationally designed a series of highly selective, potent, noncovalent, and drug-like GRK5 inhibitors. Several inhibitors exhibited low nanomolar GRK5 inhibition and high selectivity over GRK2, and, surprisingly, some were selective for GRK6. We determined high-resolution X-ray crystal structures of several inhibitors in complex with GRK5, which provide molecular insights into the ligand-binding site interactions responsible for GRK5 selectivity and potency.</div></div>\",\"PeriodicalId\":314,\"journal\":{\"name\":\"European Journal of Medicinal Chemistry\",\"volume\":\"282 \",\"pages\":\"Article 117024\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Medicinal Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0223523424009061\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0223523424009061","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

G蛋白偶联受体激酶5(GRK5)已成为治疗心力衰竭和癌症的潜在药物开发靶点。GRK6的同源物是多发性骨髓瘤的治疗靶点。我们合理地设计了一系列高选择性、强效、非共价和类药物 GRK5 抑制剂。几种抑制剂对 GRK5 的抑制作用低至纳摩尔,对 GRK2 有高选择性,令人惊讶的是,有些抑制剂对 GRK6 也有选择性。我们测定了几种抑制剂与 GRK5 复合物的高分辨率 X 射线晶体结构,从而从分子角度揭示了导致 GRK5 选择性和效力的配体-结合位点相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design, synthesis, and X-ray structural studies of a series of highly potent, selective, and drug-like G protein-coupled receptor kinase 5 inhibitors
G protein-coupled receptor kinase 5 (GRK5) has emerged as a potential drug development target against heart failure and cancer. A close homolog, GRK6 represents a therapeutic target for multiple myeloma. We have rationally designed a series of highly selective, potent, noncovalent, and drug-like GRK5 inhibitors. Several inhibitors exhibited low nanomolar GRK5 inhibition and high selectivity over GRK2, and, surprisingly, some were selective for GRK6. We determined high-resolution X-ray crystal structures of several inhibitors in complex with GRK5, which provide molecular insights into the ligand-binding site interactions responsible for GRK5 selectivity and potency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.70
自引率
9.00%
发文量
863
审稿时长
29 days
期刊介绍: The European Journal of Medicinal Chemistry is a global journal that publishes studies on all aspects of medicinal chemistry. It provides a medium for publication of original papers and also welcomes critical review papers. A typical paper would report on the organic synthesis, characterization and pharmacological evaluation of compounds. Other topics of interest are drug design, QSAR, molecular modeling, drug-receptor interactions, molecular aspects of drug metabolism, prodrug synthesis and drug targeting. The journal expects manuscripts to present the rational for a study, provide insight into the design of compounds or understanding of mechanism, or clarify the targets.
期刊最新文献
Antibacterial and Antifungal Pyrazoles Based on Different Construction Strategies Discovery of Potent and Selective Factor XIa Inhibitors Incorporating Triazole-Based Benzoic Acid as Novel P2’ Fragments: Molecular Dynamics Simulations and Anticoagulant Activity Design, synthesis, and biological evaluation of novel highly potent FXR agonists bearing piperidine scaffold Design, synthesis and anti-tumor evaluation of novel pyrimidine and quinazoline analogues Optimization of SHP2 Allosteric Inhibitors with Novel Tail Heterocycles and Their Potential as Antitumor Therapeutics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1