关闭 "设计-制造-测试-分析 "循环:实验与预测的相互作用推动了 PROTACs 生物利用率的提高

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Nano Materials Pub Date : 2024-11-08 DOI:10.1021/acs.jmedchem.4c01642
Zulma Santisteban Valencia, Jennifer Kingston, Filip Miljković, Hannah Rowbottom, Nadia Mann, Sophie Davies, Martin Ekblad, Silvio Di Castro, Karolina Kwapień, Erik Malmerberg, Stig D. Friis, Thomas Lundbäck, Tomas Leek, Johan Wernevik
{"title":"关闭 \"设计-制造-测试-分析 \"循环:实验与预测的相互作用推动了 PROTACs 生物利用率的提高","authors":"Zulma Santisteban Valencia, Jennifer Kingston, Filip Miljković, Hannah Rowbottom, Nadia Mann, Sophie Davies, Martin Ekblad, Silvio Di Castro, Karolina Kwapień, Erik Malmerberg, Stig D. Friis, Thomas Lundbäck, Tomas Leek, Johan Wernevik","doi":"10.1021/acs.jmedchem.4c01642","DOIUrl":null,"url":null,"abstract":"The drug development landscape is expanding to include drug modalities such as PROteolysis-TArgeting Chimeras (PROTACs) and peptides, offering possibilities for previously intractable biological targets. However, with their size and chemical nature, they diverge from established frameworks for the prediction of oral bioavailability. This evolution to larger and more complex molecules necessitates new methodologies and prediction models to continuously expand on bioavailability guidelines. We describe the high-capacity adoption of two chromatographic physicochemical assays and their application for iterative compound optimization to achieve oral bioavailability. We further describe how these data underpin the continuous refinement of internal machine learning models, which guide compound synthesis decisions in the molecular design phase. Based on data for a set of 691 PROTACs, and two project examples, we confirm a sweet spot for oral bioavailability at log <i>D</i> values higher than the norm for small molecules and show how experimental data and prediction models synergize to effectively drive chemistry optimization.","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Closing the Design–Make–Test–Analyze Loop: Interplay between Experiments and Predictions Drives PROTACs Bioavailability\",\"authors\":\"Zulma Santisteban Valencia, Jennifer Kingston, Filip Miljković, Hannah Rowbottom, Nadia Mann, Sophie Davies, Martin Ekblad, Silvio Di Castro, Karolina Kwapień, Erik Malmerberg, Stig D. Friis, Thomas Lundbäck, Tomas Leek, Johan Wernevik\",\"doi\":\"10.1021/acs.jmedchem.4c01642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The drug development landscape is expanding to include drug modalities such as PROteolysis-TArgeting Chimeras (PROTACs) and peptides, offering possibilities for previously intractable biological targets. However, with their size and chemical nature, they diverge from established frameworks for the prediction of oral bioavailability. This evolution to larger and more complex molecules necessitates new methodologies and prediction models to continuously expand on bioavailability guidelines. We describe the high-capacity adoption of two chromatographic physicochemical assays and their application for iterative compound optimization to achieve oral bioavailability. We further describe how these data underpin the continuous refinement of internal machine learning models, which guide compound synthesis decisions in the molecular design phase. Based on data for a set of 691 PROTACs, and two project examples, we confirm a sweet spot for oral bioavailability at log <i>D</i> values higher than the norm for small molecules and show how experimental data and prediction models synergize to effectively drive chemistry optimization.\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jmedchem.4c01642\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.jmedchem.4c01642","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

药物开发领域正在不断扩大,包括PROteolysis-TArgeting Chimeras (PROTACs) 和肽等药物模式,为以前难以解决的生物靶点提供了可能性。然而,由于它们的大小和化学性质,它们与预测口服生物利用度的既定框架存在差异。这种向更大、更复杂分子的演变需要新的方法和预测模型来不断扩展生物利用度指南。我们介绍了两种色谱理化测定的大容量采用及其在化合物迭代优化中的应用,以实现口服生物利用度。我们进一步介绍了这些数据如何支持内部机器学习模型的不断完善,这些模型可在分子设计阶段指导化合物合成决策。基于一组 691 个 PROTAC 的数据和两个项目实例,我们确认了口服生物利用度的甜蜜点,即对数 D 值高于小分子的标准值,并展示了实验数据和预测模型如何协同作用,有效推动化学优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Closing the Design–Make–Test–Analyze Loop: Interplay between Experiments and Predictions Drives PROTACs Bioavailability
The drug development landscape is expanding to include drug modalities such as PROteolysis-TArgeting Chimeras (PROTACs) and peptides, offering possibilities for previously intractable biological targets. However, with their size and chemical nature, they diverge from established frameworks for the prediction of oral bioavailability. This evolution to larger and more complex molecules necessitates new methodologies and prediction models to continuously expand on bioavailability guidelines. We describe the high-capacity adoption of two chromatographic physicochemical assays and their application for iterative compound optimization to achieve oral bioavailability. We further describe how these data underpin the continuous refinement of internal machine learning models, which guide compound synthesis decisions in the molecular design phase. Based on data for a set of 691 PROTACs, and two project examples, we confirm a sweet spot for oral bioavailability at log D values higher than the norm for small molecules and show how experimental data and prediction models synergize to effectively drive chemistry optimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
期刊最新文献
FGL2172-220 peptides improve the antitumor effect of HCMV-IE1mut vaccine against glioblastoma by modulating immunosuppressive cells in the tumor microenvironment. HLA class II neoantigen presentation for CD4+ T cell surveillance in HLA class II-negative colorectal cancer. Pretreatment With Unfractionated Heparin in ST-Elevation Myocardial Infarction—a Propensity Score Matching Analysis. The Diagnosis and Treatment of Hypertrophic Cardiomyopathy. Clinical Practice Guideline: Condylar Hyperplasia of the Mandible—Diagnosis and Treatment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1