{"title":"𝑅氧化镍(𝑅=Sm,Nd)中的应变工程热力学","authors":"Yin Shi, Long-Qing Chen","doi":"10.1103/physrevb.110.205117","DOIUrl":null,"url":null,"abstract":"Perovskite rare-earth nickelates are a prototypical class of quantum materials that exhibit rich phase-transition physics with promising applications in neuromorphic computing. Although there is existing experimental evidence demonstrating that strain may strongly influence the phase transitions of nickelate thin films, it would be extremely challenging to experimentally construct temperature-strain phase diagrams for different film orientations to guide applications. Here, we use the Ginzburg-Landau theory to formulate the thermodynamics of strained nickelates and calculate temperature-strain phase diagrams of epitaxial <mjx-container ctxtmenu_counter=\"35\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"unknown\" data-semantic-speech=\"upper S m upper N i upper O 3\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.673em;\">S</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.673em;\">m</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.673em;\">N</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.673em;\">i</mjx-c><mjx-c style=\"padding-top: 0.673em;\">O</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>3</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-math></mjx-container> and <mjx-container ctxtmenu_counter=\"36\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"unknown\" data-semantic-speech=\"upper N d upper N i upper O 3\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">N</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">d</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">N</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">i</mjx-c><mjx-c style=\"padding-top: 0.706em;\">O</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>3</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-math></mjx-container> thin films with various orientations, which are consistent with the limited existing experimental measurements. We predict that a shear strain can effectively tune the relative magnitude of the magnetic moments on the two nonequivalent Ni sublattices. Our theory provides an efficient theoretical framework for predicting the thermodynamics of strained nickelates, which will provide guidance for engineering their properties through strains.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"9 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermodynamics of strain engineering in𝑅NiO3(𝑅=Sm,Nd)\",\"authors\":\"Yin Shi, Long-Qing Chen\",\"doi\":\"10.1103/physrevb.110.205117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Perovskite rare-earth nickelates are a prototypical class of quantum materials that exhibit rich phase-transition physics with promising applications in neuromorphic computing. Although there is existing experimental evidence demonstrating that strain may strongly influence the phase transitions of nickelate thin films, it would be extremely challenging to experimentally construct temperature-strain phase diagrams for different film orientations to guide applications. Here, we use the Ginzburg-Landau theory to formulate the thermodynamics of strained nickelates and calculate temperature-strain phase diagrams of epitaxial <mjx-container ctxtmenu_counter=\\\"35\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"(2 0 1)\\\"><mjx-msub data-semantic-children=\\\"0,1\\\" data-semantic- data-semantic-owns=\\\"0 1\\\" data-semantic-role=\\\"unknown\\\" data-semantic-speech=\\\"upper S m upper N i upper O 3\\\" data-semantic-type=\\\"subscript\\\"><mjx-mi data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\"><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.673em;\\\">S</mjx-c><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.673em;\\\">m</mjx-c><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.673em;\\\">N</mjx-c><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.673em;\\\">i</mjx-c><mjx-c style=\\\"padding-top: 0.673em;\\\">O</mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.15em;\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c>3</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-math></mjx-container> and <mjx-container ctxtmenu_counter=\\\"36\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"(2 0 1)\\\"><mjx-msub data-semantic-children=\\\"0,1\\\" data-semantic- data-semantic-owns=\\\"0 1\\\" data-semantic-role=\\\"unknown\\\" data-semantic-speech=\\\"upper N d upper N i upper O 3\\\" data-semantic-type=\\\"subscript\\\"><mjx-mi data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\"><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.706em;\\\">N</mjx-c><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.706em;\\\">d</mjx-c><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.706em;\\\">N</mjx-c><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.706em;\\\">i</mjx-c><mjx-c style=\\\"padding-top: 0.706em;\\\">O</mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.15em;\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c>3</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-math></mjx-container> thin films with various orientations, which are consistent with the limited existing experimental measurements. We predict that a shear strain can effectively tune the relative magnitude of the magnetic moments on the two nonequivalent Ni sublattices. Our theory provides an efficient theoretical framework for predicting the thermodynamics of strained nickelates, which will provide guidance for engineering their properties through strains.\",\"PeriodicalId\":20082,\"journal\":{\"name\":\"Physical Review B\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevb.110.205117\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.110.205117","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Thermodynamics of strain engineering in𝑅NiO3(𝑅=Sm,Nd)
Perovskite rare-earth nickelates are a prototypical class of quantum materials that exhibit rich phase-transition physics with promising applications in neuromorphic computing. Although there is existing experimental evidence demonstrating that strain may strongly influence the phase transitions of nickelate thin films, it would be extremely challenging to experimentally construct temperature-strain phase diagrams for different film orientations to guide applications. Here, we use the Ginzburg-Landau theory to formulate the thermodynamics of strained nickelates and calculate temperature-strain phase diagrams of epitaxial SmNiO3 and NdNiO3 thin films with various orientations, which are consistent with the limited existing experimental measurements. We predict that a shear strain can effectively tune the relative magnitude of the magnetic moments on the two nonequivalent Ni sublattices. Our theory provides an efficient theoretical framework for predicting the thermodynamics of strained nickelates, which will provide guidance for engineering their properties through strains.
期刊介绍:
Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide.
PRB covers the full range of condensed matter, materials physics, and related subfields, including:
-Structure and phase transitions
-Ferroelectrics and multiferroics
-Disordered systems and alloys
-Magnetism
-Superconductivity
-Electronic structure, photonics, and metamaterials
-Semiconductors and mesoscopic systems
-Surfaces, nanoscience, and two-dimensional materials
-Topological states of matter