Zhuo Chen, Yong Huang, Zecui Gao, Yonghui Zheng, Paul H. Mayrhofer, Zaoli Zhang
{"title":"在 MoN/TiN 超晶格中直接观测肖特基空穴团簇及其机械响应","authors":"Zhuo Chen, Yong Huang, Zecui Gao, Yonghui Zheng, Paul H. Mayrhofer, Zaoli Zhang","doi":"10.1016/j.actamat.2024.120551","DOIUrl":null,"url":null,"abstract":"A deeper understanding of vacancy-induced effects in ceramics may lead to optimized material design and mechanical properties. However, current research primarily focuses on the impact of vacancies on the intrinsic mechanical properties of materials, lacking direct experimental validation of their mechanical response behavior. In this study, we closely investigate the influence of Schottky-vacancy defects introduced during the deposition process on the mechanical behavior of MoN/TiN superlattice. In the as-deposited coating, Schottky vacancies are found to be distributed inside MoN as clusters. By coupling FIB with cross-sectional TEM observation, we further revealed Schottky vacancies evolution under loads at the atomic level and their significant impact on superlattice deformation. These Schottky vacancies promote superlattice intermixing and weaken the interface-strengthening effect. However, they are also beneficial to dislocation nucleation and increase the nitride plastic deformability. These findings provide a new perspective on the impact of point defects on the mechanical properties of ceramic materials.","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"36 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direct observation of Schottky-vacancy clusters and their mechanical response in MoN/TiN superlattice\",\"authors\":\"Zhuo Chen, Yong Huang, Zecui Gao, Yonghui Zheng, Paul H. Mayrhofer, Zaoli Zhang\",\"doi\":\"10.1016/j.actamat.2024.120551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A deeper understanding of vacancy-induced effects in ceramics may lead to optimized material design and mechanical properties. However, current research primarily focuses on the impact of vacancies on the intrinsic mechanical properties of materials, lacking direct experimental validation of their mechanical response behavior. In this study, we closely investigate the influence of Schottky-vacancy defects introduced during the deposition process on the mechanical behavior of MoN/TiN superlattice. In the as-deposited coating, Schottky vacancies are found to be distributed inside MoN as clusters. By coupling FIB with cross-sectional TEM observation, we further revealed Schottky vacancies evolution under loads at the atomic level and their significant impact on superlattice deformation. These Schottky vacancies promote superlattice intermixing and weaken the interface-strengthening effect. However, they are also beneficial to dislocation nucleation and increase the nitride plastic deformability. These findings provide a new perspective on the impact of point defects on the mechanical properties of ceramic materials.\",\"PeriodicalId\":238,\"journal\":{\"name\":\"Acta Materialia\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Materialia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.actamat.2024.120551\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.actamat.2024.120551","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
深入了解陶瓷中的空位诱导效应可优化材料设计和机械性能。然而,目前的研究主要集中于空位对材料内在力学性能的影响,缺乏对其力学响应行为的直接实验验证。在本研究中,我们仔细研究了沉积过程中引入的肖特基空位缺陷对 MoN/TiN 超晶格力学行为的影响。在沉积涂层中,肖特基空位以团簇形式分布在 MoN 内部。通过将 FIB 与横截面 TEM 观察相结合,我们进一步揭示了肖特基空位在原子级负载下的演化及其对超晶格变形的重要影响。这些肖特基空位会促进超晶格混杂,削弱界面强化效应。然而,它们也有利于位错成核并增加氮化物的塑性变形能力。这些发现为点缺陷对陶瓷材料机械性能的影响提供了一个新的视角。
Direct observation of Schottky-vacancy clusters and their mechanical response in MoN/TiN superlattice
A deeper understanding of vacancy-induced effects in ceramics may lead to optimized material design and mechanical properties. However, current research primarily focuses on the impact of vacancies on the intrinsic mechanical properties of materials, lacking direct experimental validation of their mechanical response behavior. In this study, we closely investigate the influence of Schottky-vacancy defects introduced during the deposition process on the mechanical behavior of MoN/TiN superlattice. In the as-deposited coating, Schottky vacancies are found to be distributed inside MoN as clusters. By coupling FIB with cross-sectional TEM observation, we further revealed Schottky vacancies evolution under loads at the atomic level and their significant impact on superlattice deformation. These Schottky vacancies promote superlattice intermixing and weaken the interface-strengthening effect. However, they are also beneficial to dislocation nucleation and increase the nitride plastic deformability. These findings provide a new perspective on the impact of point defects on the mechanical properties of ceramic materials.
期刊介绍:
Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.