Mohamed Oudah, Hsiang-Hsi Kung, Samikshya Sahu, Niclas Heinsdorf, Armin Schulz, Kai Philippi, Marta-Villa De Toro Sanchez, Yipeng Cai, Kenji Kojima, Andreas P. Schnyder, Hidenori Takagi, Bernhard Keimer, Doug A. Bonn, Alannah M. Hallas
{"title":"在非中心对称韦尔半金属 LaRhGe3 中发现超导性和电子-声子阻力","authors":"Mohamed Oudah, Hsiang-Hsi Kung, Samikshya Sahu, Niclas Heinsdorf, Armin Schulz, Kai Philippi, Marta-Villa De Toro Sanchez, Yipeng Cai, Kenji Kojima, Andreas P. Schnyder, Hidenori Takagi, Bernhard Keimer, Doug A. Bonn, Alannah M. Hallas","doi":"10.1038/s41535-024-00686-8","DOIUrl":null,"url":null,"abstract":"<p>We present an exploration of the effect of electron-phonon coupling and broken inversion symmetry on the electronic and thermal properties of the semimetal LaRhGe<sub>3</sub>. Our transport measurements reveal evidence for electron-hole compensation at low temperatures, resulting in a large magnetoresistance of 3000% at 1.8 K and 14 T. The carrier concentration is on the order of 10<sup>21</sup>/cm<sup>3</sup> with high carrier mobilities of 2000 cm<sup>2</sup>/Vs. When coupled to our theoretical demonstration of symmetry-protected <i>almost movable</i> Weyl nodal lines, we conclude that LaRhGe<sub>3</sub> supports a Weyl semimetallic state. We discover superconductivity in this compound with a <i>T</i><sub>c</sub> of 0.39(1) K and <i>B</i><sub>c</sub>(0) of 2.2(1) mT, with evidence from specific heat and transverse-field muon spin relaxation. We find an exponential dependence in the normal state electrical resistivity below ~50 K, while Seebeck coefficient and thermal conductivity measurements each reveal a prominent peak at low temperatures, indicative of strong electron-phonon interactions. To this end, we examine the temperature-dependent Raman spectra of LaRhGe<sub>3</sub> and find that the lifetime of the lowest energy <i>A</i><sub>1</sub> phonon is dominated by phonon-electron scattering instead of anharmonic decay. We conclude that LaRhGe<sub>3</sub> has strong electron-phonon coupling in the normal state, while the superconductivity emerges from weak electron-phonon coupling. These results open up the investigation of electron-phonon interactions in the normal state of superconducting non-centrosymmetric Weyl semimetals.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"5 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovery of superconductivity and electron-phonon drag in the non-centrosymmetric Weyl semimetal LaRhGe3\",\"authors\":\"Mohamed Oudah, Hsiang-Hsi Kung, Samikshya Sahu, Niclas Heinsdorf, Armin Schulz, Kai Philippi, Marta-Villa De Toro Sanchez, Yipeng Cai, Kenji Kojima, Andreas P. Schnyder, Hidenori Takagi, Bernhard Keimer, Doug A. Bonn, Alannah M. Hallas\",\"doi\":\"10.1038/s41535-024-00686-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present an exploration of the effect of electron-phonon coupling and broken inversion symmetry on the electronic and thermal properties of the semimetal LaRhGe<sub>3</sub>. Our transport measurements reveal evidence for electron-hole compensation at low temperatures, resulting in a large magnetoresistance of 3000% at 1.8 K and 14 T. The carrier concentration is on the order of 10<sup>21</sup>/cm<sup>3</sup> with high carrier mobilities of 2000 cm<sup>2</sup>/Vs. When coupled to our theoretical demonstration of symmetry-protected <i>almost movable</i> Weyl nodal lines, we conclude that LaRhGe<sub>3</sub> supports a Weyl semimetallic state. We discover superconductivity in this compound with a <i>T</i><sub>c</sub> of 0.39(1) K and <i>B</i><sub>c</sub>(0) of 2.2(1) mT, with evidence from specific heat and transverse-field muon spin relaxation. We find an exponential dependence in the normal state electrical resistivity below ~50 K, while Seebeck coefficient and thermal conductivity measurements each reveal a prominent peak at low temperatures, indicative of strong electron-phonon interactions. To this end, we examine the temperature-dependent Raman spectra of LaRhGe<sub>3</sub> and find that the lifetime of the lowest energy <i>A</i><sub>1</sub> phonon is dominated by phonon-electron scattering instead of anharmonic decay. We conclude that LaRhGe<sub>3</sub> has strong electron-phonon coupling in the normal state, while the superconductivity emerges from weak electron-phonon coupling. These results open up the investigation of electron-phonon interactions in the normal state of superconducting non-centrosymmetric Weyl semimetals.</p>\",\"PeriodicalId\":19283,\"journal\":{\"name\":\"npj Quantum Materials\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Quantum Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41535-024-00686-8\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41535-024-00686-8","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Discovery of superconductivity and electron-phonon drag in the non-centrosymmetric Weyl semimetal LaRhGe3
We present an exploration of the effect of electron-phonon coupling and broken inversion symmetry on the electronic and thermal properties of the semimetal LaRhGe3. Our transport measurements reveal evidence for electron-hole compensation at low temperatures, resulting in a large magnetoresistance of 3000% at 1.8 K and 14 T. The carrier concentration is on the order of 1021/cm3 with high carrier mobilities of 2000 cm2/Vs. When coupled to our theoretical demonstration of symmetry-protected almost movable Weyl nodal lines, we conclude that LaRhGe3 supports a Weyl semimetallic state. We discover superconductivity in this compound with a Tc of 0.39(1) K and Bc(0) of 2.2(1) mT, with evidence from specific heat and transverse-field muon spin relaxation. We find an exponential dependence in the normal state electrical resistivity below ~50 K, while Seebeck coefficient and thermal conductivity measurements each reveal a prominent peak at low temperatures, indicative of strong electron-phonon interactions. To this end, we examine the temperature-dependent Raman spectra of LaRhGe3 and find that the lifetime of the lowest energy A1 phonon is dominated by phonon-electron scattering instead of anharmonic decay. We conclude that LaRhGe3 has strong electron-phonon coupling in the normal state, while the superconductivity emerges from weak electron-phonon coupling. These results open up the investigation of electron-phonon interactions in the normal state of superconducting non-centrosymmetric Weyl semimetals.
期刊介绍:
npj Quantum Materials is an open access journal that publishes works that significantly advance the understanding of quantum materials, including their fundamental properties, fabrication and applications.