{"title":"通过无质量狄拉克材料中的巨动力学弗兰兹-凯尔迪什效应揭示伪自旋","authors":"Youngjae Kim","doi":"10.1038/s41535-024-00701-y","DOIUrl":null,"url":null,"abstract":"<p>The dynamical Franz-Keldysh effect, indicative of the transient light-matter interaction regime between quantum and classical realms, is widely recognized as an essential signature in wide bandgap condensed matter systems such as dielectrics. In this theoretical study, we applied time-resolved transient absorption spectroscopy to investigate ultrafast optical responses in graphene, a zero-bandgap system. We observed in the gate-tuned graphene that the massless Dirac materials notably enhance intraband light-driven transitions, significantly leading to the giant dynamical Franz-Keldysh effect compared to the massive Dirac materials, a wide bandgap system. In addition, employing the angle-resolved spectroscopy, it is found that the unique polarimetry orientation, i.e., perpendicular polarizations for the pump and the probe, further pronounces the optical spectra to exhibit the complete fishbone structure, reflecting quantum pseudospin natures of Dirac cones. Our findings expand the establishment of emergent transient spectroscopy frameworks into not only zero-bandgap systems but also pseudospin-mediated quantum phenomena, moving beyond dielectrics.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"33 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pseudospins revealed through the giant dynamical Franz-Keldysh effect in massless Dirac materials\",\"authors\":\"Youngjae Kim\",\"doi\":\"10.1038/s41535-024-00701-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The dynamical Franz-Keldysh effect, indicative of the transient light-matter interaction regime between quantum and classical realms, is widely recognized as an essential signature in wide bandgap condensed matter systems such as dielectrics. In this theoretical study, we applied time-resolved transient absorption spectroscopy to investigate ultrafast optical responses in graphene, a zero-bandgap system. We observed in the gate-tuned graphene that the massless Dirac materials notably enhance intraband light-driven transitions, significantly leading to the giant dynamical Franz-Keldysh effect compared to the massive Dirac materials, a wide bandgap system. In addition, employing the angle-resolved spectroscopy, it is found that the unique polarimetry orientation, i.e., perpendicular polarizations for the pump and the probe, further pronounces the optical spectra to exhibit the complete fishbone structure, reflecting quantum pseudospin natures of Dirac cones. Our findings expand the establishment of emergent transient spectroscopy frameworks into not only zero-bandgap systems but also pseudospin-mediated quantum phenomena, moving beyond dielectrics.</p>\",\"PeriodicalId\":19283,\"journal\":{\"name\":\"npj Quantum Materials\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Quantum Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41535-024-00701-y\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41535-024-00701-y","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Pseudospins revealed through the giant dynamical Franz-Keldysh effect in massless Dirac materials
The dynamical Franz-Keldysh effect, indicative of the transient light-matter interaction regime between quantum and classical realms, is widely recognized as an essential signature in wide bandgap condensed matter systems such as dielectrics. In this theoretical study, we applied time-resolved transient absorption spectroscopy to investigate ultrafast optical responses in graphene, a zero-bandgap system. We observed in the gate-tuned graphene that the massless Dirac materials notably enhance intraband light-driven transitions, significantly leading to the giant dynamical Franz-Keldysh effect compared to the massive Dirac materials, a wide bandgap system. In addition, employing the angle-resolved spectroscopy, it is found that the unique polarimetry orientation, i.e., perpendicular polarizations for the pump and the probe, further pronounces the optical spectra to exhibit the complete fishbone structure, reflecting quantum pseudospin natures of Dirac cones. Our findings expand the establishment of emergent transient spectroscopy frameworks into not only zero-bandgap systems but also pseudospin-mediated quantum phenomena, moving beyond dielectrics.
期刊介绍:
npj Quantum Materials is an open access journal that publishes works that significantly advance the understanding of quantum materials, including their fundamental properties, fabrication and applications.