{"title":"动量偏移和壳上可构建的大质量振幅","authors":"Yohei Ema, Ting Gao, Wenqi Ke, Zhen Liu, Kun-Feng Lyu, Ishmam Mahbub","doi":"10.1103/physrevd.110.105003","DOIUrl":null,"url":null,"abstract":"We construct tree-level amplitude for massive particles using on-shell recursion relations based on two classes of momentum shifts: an all-line transverse shift that deforms momentum by its transverse polarization vector, and a massive Britto-Cachazo-Feng-Witten-type shift. We illustrate that these shifts allow us to correctly calculate four-point and five-point amplitudes in massive QED, without an ambiguity associated with the contact terms that may arise from a simple “gluing” of lower-point on-shell amplitudes. We discuss various aspects and applicability of the two shifts, including the large-<mjx-container ctxtmenu_counter=\"2\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"z\" data-semantic-type=\"identifier\"><mjx-c>𝑧</mjx-c></mjx-mi></mjx-math></mjx-container> behavior and complexity scaling. We show that there exists a “good” all-line transverse shift for all possible little group configurations of the external particles, which can be extended to a broader class of theories with massive particles such as massive QCD and theories with massive spin-1 particles. The massive Britto-Cachazo-Feng-Witten-type shift enjoys more simplicity, but a “good” shift does not exist for all the spin states due to the specific choice of spin axis.","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"70 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Momentum shift and on-shell constructible massive amplitudes\",\"authors\":\"Yohei Ema, Ting Gao, Wenqi Ke, Zhen Liu, Kun-Feng Lyu, Ishmam Mahbub\",\"doi\":\"10.1103/physrevd.110.105003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct tree-level amplitude for massive particles using on-shell recursion relations based on two classes of momentum shifts: an all-line transverse shift that deforms momentum by its transverse polarization vector, and a massive Britto-Cachazo-Feng-Witten-type shift. We illustrate that these shifts allow us to correctly calculate four-point and five-point amplitudes in massive QED, without an ambiguity associated with the contact terms that may arise from a simple “gluing” of lower-point on-shell amplitudes. We discuss various aspects and applicability of the two shifts, including the large-<mjx-container ctxtmenu_counter=\\\"2\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"0\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"z\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝑧</mjx-c></mjx-mi></mjx-math></mjx-container> behavior and complexity scaling. We show that there exists a “good” all-line transverse shift for all possible little group configurations of the external particles, which can be extended to a broader class of theories with massive particles such as massive QCD and theories with massive spin-1 particles. The massive Britto-Cachazo-Feng-Witten-type shift enjoys more simplicity, but a “good” shift does not exist for all the spin states due to the specific choice of spin axis.\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.110.105003\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.110.105003","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Momentum shift and on-shell constructible massive amplitudes
We construct tree-level amplitude for massive particles using on-shell recursion relations based on two classes of momentum shifts: an all-line transverse shift that deforms momentum by its transverse polarization vector, and a massive Britto-Cachazo-Feng-Witten-type shift. We illustrate that these shifts allow us to correctly calculate four-point and five-point amplitudes in massive QED, without an ambiguity associated with the contact terms that may arise from a simple “gluing” of lower-point on-shell amplitudes. We discuss various aspects and applicability of the two shifts, including the large-𝑧 behavior and complexity scaling. We show that there exists a “good” all-line transverse shift for all possible little group configurations of the external particles, which can be extended to a broader class of theories with massive particles such as massive QCD and theories with massive spin-1 particles. The massive Britto-Cachazo-Feng-Witten-type shift enjoys more simplicity, but a “good” shift does not exist for all the spin states due to the specific choice of spin axis.
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.