利用基于八螺旋耦合的高 Q 值谐振器提高 1.5T 磁共振成像扫描的信噪比

IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES Advanced Theory and Simulations Pub Date : 2024-11-07 DOI:10.1002/adts.202400848
Jegyasu Gupta, Ratnajit Bhattacharjee, Subramani Kanagaraj, Debabrata Sikdar
{"title":"利用基于八螺旋耦合的高 Q 值谐振器提高 1.5T 磁共振成像扫描的信噪比","authors":"Jegyasu Gupta, Ratnajit Bhattacharjee, Subramani Kanagaraj, Debabrata Sikdar","doi":"10.1002/adts.202400848","DOIUrl":null,"url":null,"abstract":"Metamaterials or metamaterial‐inspired structures/resonators have yielded significant advancement in the imaging capabilities of Magnetic Resonance Imaging (MRI) by boosting its performance parameter, i.e., signal‐to‐noise ratio (SNR). Metamaterials have a distinctive ability to boost and redistribute magnetic fields inside the subject undergoing scan when integrated as accessories between receive arrays and the subject. However, the translation of most reported metamaterials into a clinical accessory is still limited and challenging due to their low sensitivity, sub‐optimal performance, and bulky footprints for integration inside MRI scanners. Herein, a metamaterial‐inspired structure is developed using coupled octa‐spiral resonators to boost magnetic field localization inside the scanned region. In addition, the high‐Q resonance of the metamaterial‐inspired structure improves impedance matching and enhances the transmit/receive efficiency of MRI coils. Theoretical analysis of electromagnetic responses and full‐wave simulations show a homogeneous boost in SNR by over times throughout a human‐properties mimicking phantom using the resonator with a maximum SNR enhancement factor (EF) of . The spatial distribution of SNR EF inside the phantom is also validated by preliminary laboratory experiments. Thus, the developed coupled octa‐spirals resonator can pave the way for developing and adopting metamaterial‐inspired devices as clinical accessories for facilitating better, faster, and cost‐effective MRI scans.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"150 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving Signal‐to‐Noise Ratio of 1.5T MRI Scans Using High‐Q Resonators Based on Coupled Octa‐Spirals\",\"authors\":\"Jegyasu Gupta, Ratnajit Bhattacharjee, Subramani Kanagaraj, Debabrata Sikdar\",\"doi\":\"10.1002/adts.202400848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metamaterials or metamaterial‐inspired structures/resonators have yielded significant advancement in the imaging capabilities of Magnetic Resonance Imaging (MRI) by boosting its performance parameter, i.e., signal‐to‐noise ratio (SNR). Metamaterials have a distinctive ability to boost and redistribute magnetic fields inside the subject undergoing scan when integrated as accessories between receive arrays and the subject. However, the translation of most reported metamaterials into a clinical accessory is still limited and challenging due to their low sensitivity, sub‐optimal performance, and bulky footprints for integration inside MRI scanners. Herein, a metamaterial‐inspired structure is developed using coupled octa‐spiral resonators to boost magnetic field localization inside the scanned region. In addition, the high‐Q resonance of the metamaterial‐inspired structure improves impedance matching and enhances the transmit/receive efficiency of MRI coils. Theoretical analysis of electromagnetic responses and full‐wave simulations show a homogeneous boost in SNR by over times throughout a human‐properties mimicking phantom using the resonator with a maximum SNR enhancement factor (EF) of . The spatial distribution of SNR EF inside the phantom is also validated by preliminary laboratory experiments. Thus, the developed coupled octa‐spirals resonator can pave the way for developing and adopting metamaterial‐inspired devices as clinical accessories for facilitating better, faster, and cost‐effective MRI scans.\",\"PeriodicalId\":7219,\"journal\":{\"name\":\"Advanced Theory and Simulations\",\"volume\":\"150 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Theory and Simulations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/adts.202400848\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202400848","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

超材料或受超材料启发的结构/谐振器通过提高磁共振成像(MRI)的性能参数,即信噪比(SNR),极大地提升了磁共振成像(MRI)的成像能力。超材料作为接收阵列和扫描对象之间的附件,具有增强和重新分配扫描对象内部磁场的独特能力。然而,由于超材料的灵敏度低、性能不理想,以及集成到核磁共振成像扫描仪中的体积庞大,大多数报道的超材料转化为临床附件的可能性仍然有限,而且具有挑战性。本文开发了一种受超材料启发的结构,使用耦合八螺旋谐振器来增强扫描区域内的磁场定位。此外,超材料启发结构的高 Q 值共振改善了阻抗匹配,提高了核磁共振线圈的发射/接收效率。电磁响应的理论分析和全波仿真显示,使用该谐振器,整个人体仿真模型的信噪比均匀提高了数倍,最大信噪比增强因子(EF)为 0.5。 信噪比增强因子在模型内的空间分布也得到了初步实验室实验的验证。因此,所开发的八螺旋耦合谐振器可以为开发和采用超材料启发器件作为临床附件铺平道路,从而促进更好、更快和更经济的磁共振成像扫描。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving Signal‐to‐Noise Ratio of 1.5T MRI Scans Using High‐Q Resonators Based on Coupled Octa‐Spirals
Metamaterials or metamaterial‐inspired structures/resonators have yielded significant advancement in the imaging capabilities of Magnetic Resonance Imaging (MRI) by boosting its performance parameter, i.e., signal‐to‐noise ratio (SNR). Metamaterials have a distinctive ability to boost and redistribute magnetic fields inside the subject undergoing scan when integrated as accessories between receive arrays and the subject. However, the translation of most reported metamaterials into a clinical accessory is still limited and challenging due to their low sensitivity, sub‐optimal performance, and bulky footprints for integration inside MRI scanners. Herein, a metamaterial‐inspired structure is developed using coupled octa‐spiral resonators to boost magnetic field localization inside the scanned region. In addition, the high‐Q resonance of the metamaterial‐inspired structure improves impedance matching and enhances the transmit/receive efficiency of MRI coils. Theoretical analysis of electromagnetic responses and full‐wave simulations show a homogeneous boost in SNR by over times throughout a human‐properties mimicking phantom using the resonator with a maximum SNR enhancement factor (EF) of . The spatial distribution of SNR EF inside the phantom is also validated by preliminary laboratory experiments. Thus, the developed coupled octa‐spirals resonator can pave the way for developing and adopting metamaterial‐inspired devices as clinical accessories for facilitating better, faster, and cost‐effective MRI scans.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Theory and Simulations
Advanced Theory and Simulations Multidisciplinary-Multidisciplinary
CiteScore
5.50
自引率
3.00%
发文量
221
期刊介绍: Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including: materials, chemistry, condensed matter physics engineering, energy life science, biology, medicine atmospheric/environmental science, climate science planetary science, astronomy, cosmology method development, numerical methods, statistics
期刊最新文献
A Physics-Driven GraphSAGE Method for Physical Field Simulations Described by Partial Differential Equations Ferrocene Appended Linear Chromophores for Aggregation-Induced Emission (AIE) and Nonlinear Optics (NLO): Combined Experimental and Theoretical Studies Role of Ag Nanowires: MXenes in Optimizing Flexible, Semitransparent Bifacial Inverted Perovskite Solar Cells for Building-Integrated Photovoltaics: A SCAPS-1D Modeling Approach Machine-Learned Modeling for Accelerating Organic Solvent Design in Metal-Ion Batteries Topology Optimization Enabled High Performance and Easy-to-Fabricate Hybrid Photonic Crystals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1