{"title":"阳离子聚合物激活的 Au(I)-GSH 复合物的聚集诱导发射 (AIE),用于灵敏检测和灭活食源性病原体","authors":"Ruimeng Sun, Jiayu Guo, Yurou Wang, Han Wang, Haoran Zheng, Yanfei Qi","doi":"10.1016/j.foodchem.2024.141988","DOIUrl":null,"url":null,"abstract":"Aggregation-induced emission (AIE) is a novel signal output method but is limited in pathogen sensing. Herein, a multifunctional biosensor based on the AIE properties of Au(I)-GSH complexes as signal conversion tags was firstly constructed for rapid and sensitive total bacteria. Bacteria were captured by the boronic acid group of MNPs@Au@4-MPBA (MAu@MPBA) through recognition of peptidoglycan on their surface. Simultaneously, cationic polymer Poly (diallyldimethylammonium chloride) (PDDA) were electrostatic absorb on bacteria. After magnetic separation, the remaining PDDA induced Au(I)-GSH complexes aggregation to produce strong red fluorescence, which was linearly with the quantity of bacteria. Under optimized conditions, quantitative detection of bacteria can be achieved within 60 min, with a minimum detection concentration of 18 CFU/mL. Moreover, 90 % bacteria can be effectively inactivated while being detected. This strategy is capable of sensitively detecting and killing foodborne pathogens and can be successfully applied to food safety monitoring.","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aggregation-induced emission (AIE) of Au(I)-GSH complexes activated by cationic polymer for sensitive foodborne pathogens detection and inactivation\",\"authors\":\"Ruimeng Sun, Jiayu Guo, Yurou Wang, Han Wang, Haoran Zheng, Yanfei Qi\",\"doi\":\"10.1016/j.foodchem.2024.141988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aggregation-induced emission (AIE) is a novel signal output method but is limited in pathogen sensing. Herein, a multifunctional biosensor based on the AIE properties of Au(I)-GSH complexes as signal conversion tags was firstly constructed for rapid and sensitive total bacteria. Bacteria were captured by the boronic acid group of MNPs@Au@4-MPBA (MAu@MPBA) through recognition of peptidoglycan on their surface. Simultaneously, cationic polymer Poly (diallyldimethylammonium chloride) (PDDA) were electrostatic absorb on bacteria. After magnetic separation, the remaining PDDA induced Au(I)-GSH complexes aggregation to produce strong red fluorescence, which was linearly with the quantity of bacteria. Under optimized conditions, quantitative detection of bacteria can be achieved within 60 min, with a minimum detection concentration of 18 CFU/mL. Moreover, 90 % bacteria can be effectively inactivated while being detected. This strategy is capable of sensitively detecting and killing foodborne pathogens and can be successfully applied to food safety monitoring.\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1016/j.foodchem.2024.141988\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.foodchem.2024.141988","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Aggregation-induced emission (AIE) of Au(I)-GSH complexes activated by cationic polymer for sensitive foodborne pathogens detection and inactivation
Aggregation-induced emission (AIE) is a novel signal output method but is limited in pathogen sensing. Herein, a multifunctional biosensor based on the AIE properties of Au(I)-GSH complexes as signal conversion tags was firstly constructed for rapid and sensitive total bacteria. Bacteria were captured by the boronic acid group of MNPs@Au@4-MPBA (MAu@MPBA) through recognition of peptidoglycan on their surface. Simultaneously, cationic polymer Poly (diallyldimethylammonium chloride) (PDDA) were electrostatic absorb on bacteria. After magnetic separation, the remaining PDDA induced Au(I)-GSH complexes aggregation to produce strong red fluorescence, which was linearly with the quantity of bacteria. Under optimized conditions, quantitative detection of bacteria can be achieved within 60 min, with a minimum detection concentration of 18 CFU/mL. Moreover, 90 % bacteria can be effectively inactivated while being detected. This strategy is capable of sensitively detecting and killing foodborne pathogens and can be successfully applied to food safety monitoring.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture