利用快速、稳健的微流 LC-MS/MS 系统进行蛋白质组分析,评估母乳蛋白质成分的区域和纵向动态变化

IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Biomaterials Science & Engineering Pub Date : 2024-11-09 DOI:10.1016/j.foodchem.2024.141981
Junxia Cao, Xinling Cui, Hai Lu, Hui Wang, Wen Ma, Zhan Yue, Kemiao Zhen, Qiaosi Wei, Hongmei Li, Shilong Jiang, Wantao Ying
{"title":"利用快速、稳健的微流 LC-MS/MS 系统进行蛋白质组分析,评估母乳蛋白质成分的区域和纵向动态变化","authors":"Junxia Cao, Xinling Cui, Hai Lu, Hui Wang, Wen Ma, Zhan Yue, Kemiao Zhen, Qiaosi Wei, Hongmei Li, Shilong Jiang, Wantao Ying","doi":"10.1016/j.foodchem.2024.141981","DOIUrl":null,"url":null,"abstract":"An in-depth exploration of molecular composition of human milk could provide a scientific basis for the development of substitutes. The present study was conducted to analyze human milk proteins from 110 individuals from five regions of China and across three stages of lactation to investigate the change patterns. We developed a micro-flow liquid chromatography tandem mass spectrometry (μLC–MS/MS) system with data-independent acquisition (DIA) proteomics technology that can rapidly and stably characterize the human milk proteome. In total, 2796 proteins were identified. Among these proteins, CPM, ACSL1, and RPL13 changed significantly during lactation, and SCP2, GALK1 and GALE changed significantly between regions. Bioinformatics analysis revealed that human milk is altered by complex interactions between genetic and environmental factors. Our results not only reveal the regional and longitudinal patterns of change in human milk proteome but also provide theoretical basis and technical support for the production and quality control of infant formula.","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regional and longitudinal dynamics of human milk protein components assessed by proteome analysis on a fast and robust micro-flow LC–MS/MS system\",\"authors\":\"Junxia Cao, Xinling Cui, Hai Lu, Hui Wang, Wen Ma, Zhan Yue, Kemiao Zhen, Qiaosi Wei, Hongmei Li, Shilong Jiang, Wantao Ying\",\"doi\":\"10.1016/j.foodchem.2024.141981\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An in-depth exploration of molecular composition of human milk could provide a scientific basis for the development of substitutes. The present study was conducted to analyze human milk proteins from 110 individuals from five regions of China and across three stages of lactation to investigate the change patterns. We developed a micro-flow liquid chromatography tandem mass spectrometry (μLC–MS/MS) system with data-independent acquisition (DIA) proteomics technology that can rapidly and stably characterize the human milk proteome. In total, 2796 proteins were identified. Among these proteins, CPM, ACSL1, and RPL13 changed significantly during lactation, and SCP2, GALK1 and GALE changed significantly between regions. Bioinformatics analysis revealed that human milk is altered by complex interactions between genetic and environmental factors. Our results not only reveal the regional and longitudinal patterns of change in human milk proteome but also provide theoretical basis and technical support for the production and quality control of infant formula.\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1016/j.foodchem.2024.141981\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.foodchem.2024.141981","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

对母乳分子组成的深入研究可为替代品的开发提供科学依据。本研究对来自中国五个地区、三个哺乳期的 110 人的母乳蛋白质进行了分析,研究其变化规律。我们开发了一种微流液相色谱串联质谱(μLC-MS/MS)系统,该系统采用了数据独立获取(DIA)蛋白质组学技术,可快速、稳定地表征母乳蛋白质组。共鉴定出 2796 个蛋白质。在这些蛋白质中,CPM、ACSL1和RPL13在泌乳期发生了显著变化,SCP2、GALK1和GALE在不同区域间发生了显著变化。生物信息学分析表明,人类乳汁的改变是由遗传和环境因素之间复杂的相互作用引起的。我们的研究结果不仅揭示了母乳蛋白质组的区域和纵向变化规律,还为婴幼儿配方奶粉的生产和质量控制提供了理论依据和技术支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Regional and longitudinal dynamics of human milk protein components assessed by proteome analysis on a fast and robust micro-flow LC–MS/MS system
An in-depth exploration of molecular composition of human milk could provide a scientific basis for the development of substitutes. The present study was conducted to analyze human milk proteins from 110 individuals from five regions of China and across three stages of lactation to investigate the change patterns. We developed a micro-flow liquid chromatography tandem mass spectrometry (μLC–MS/MS) system with data-independent acquisition (DIA) proteomics technology that can rapidly and stably characterize the human milk proteome. In total, 2796 proteins were identified. Among these proteins, CPM, ACSL1, and RPL13 changed significantly during lactation, and SCP2, GALK1 and GALE changed significantly between regions. Bioinformatics analysis revealed that human milk is altered by complex interactions between genetic and environmental factors. Our results not only reveal the regional and longitudinal patterns of change in human milk proteome but also provide theoretical basis and technical support for the production and quality control of infant formula.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
期刊最新文献
Corrigendum to "Janus hydrogel loaded with a CO2-generating chemical reaction system: Construction, characterization, and application in fruit and vegetable preservation" [Food Chemistry 458 (2024) 140271]. Comprehensive physicochemical indicators analysis and quality evaluation model construction for the post-harvest ripening rapeseeds. Evaluation of passive samplers as a cost-effective method to predict the impact of wildfire smoke in grapes and wines. Heat-induced interactions between microfluidized hemp protein particles and caseins or whey proteins. Natural α-glucosidase inhibitors from Aquilaria sinensis leaf-tea: Targeted bio-affinity screening, identification, and inhibition mechanism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1