Edgar Santos-Fernandez, Jay M. Ver Hoef, Erin E. Peterson, James McGree, Cesar A. Villa, Catherine Leigh, Ryan Turner, Cameron Roberts, Kerrie Mengersen
{"title":"时空流网络传感器数据中的无监督异常检测","authors":"Edgar Santos-Fernandez, Jay M. Ver Hoef, Erin E. Peterson, James McGree, Cesar A. Villa, Catherine Leigh, Ryan Turner, Cameron Roberts, Kerrie Mengersen","doi":"10.1029/2023wr035707","DOIUrl":null,"url":null,"abstract":"The use of in-situ digital sensors for water quality monitoring is becoming increasingly common worldwide. While these sensors provide near real-time data for science, the data are prone to technical anomalies that can undermine the trustworthiness of the data and the accuracy of statistical inferences, particularly in spatial and temporal analyses. Here we propose a framework for detecting anomalies in sensor data recorded in stream networks, which takes advantage of spatial and temporal autocorrelation to improve detection rates. The proposed framework involves the implementation of effective data imputation to handle missing data, alignment of time-series to address temporal disparities, and the identification of water quality events. We explore the effectiveness of a suite of state-of-the-art statistical methods including posterior predictive distributions, finite mixtures, and Hidden Markov Models (HMM). We showcase the practical implementation of automated anomaly detection in near-real time by employing a Bayesian recursive approach. This demonstration is conducted through a comprehensive simulation study and a practical application to a substantive case study situated in the Herbert River, located in Queensland, Australia, which flows into the Great Barrier Reef. We found that methods such as posterior predictive distributions and HMM produce the best performance in detecting multiple types of anomalies. Utilizing data from multiple sensors deployed relatively near one another enhances the ability to distinguish between water quality events and technical anomalies, thereby significantly improving the accuracy of anomaly detection. Thus, uncertainty and biases in water quality reporting, interpretation, and modeling are reduced, and the effectiveness of subsequent management actions improved.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unsupervised Anomaly Detection in Spatio-Temporal Stream Network Sensor Data\",\"authors\":\"Edgar Santos-Fernandez, Jay M. Ver Hoef, Erin E. Peterson, James McGree, Cesar A. Villa, Catherine Leigh, Ryan Turner, Cameron Roberts, Kerrie Mengersen\",\"doi\":\"10.1029/2023wr035707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of in-situ digital sensors for water quality monitoring is becoming increasingly common worldwide. While these sensors provide near real-time data for science, the data are prone to technical anomalies that can undermine the trustworthiness of the data and the accuracy of statistical inferences, particularly in spatial and temporal analyses. Here we propose a framework for detecting anomalies in sensor data recorded in stream networks, which takes advantage of spatial and temporal autocorrelation to improve detection rates. The proposed framework involves the implementation of effective data imputation to handle missing data, alignment of time-series to address temporal disparities, and the identification of water quality events. We explore the effectiveness of a suite of state-of-the-art statistical methods including posterior predictive distributions, finite mixtures, and Hidden Markov Models (HMM). We showcase the practical implementation of automated anomaly detection in near-real time by employing a Bayesian recursive approach. This demonstration is conducted through a comprehensive simulation study and a practical application to a substantive case study situated in the Herbert River, located in Queensland, Australia, which flows into the Great Barrier Reef. We found that methods such as posterior predictive distributions and HMM produce the best performance in detecting multiple types of anomalies. Utilizing data from multiple sensors deployed relatively near one another enhances the ability to distinguish between water quality events and technical anomalies, thereby significantly improving the accuracy of anomaly detection. Thus, uncertainty and biases in water quality reporting, interpretation, and modeling are reduced, and the effectiveness of subsequent management actions improved.\",\"PeriodicalId\":23799,\"journal\":{\"name\":\"Water Resources Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Resources Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1029/2023wr035707\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2023wr035707","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Unsupervised Anomaly Detection in Spatio-Temporal Stream Network Sensor Data
The use of in-situ digital sensors for water quality monitoring is becoming increasingly common worldwide. While these sensors provide near real-time data for science, the data are prone to technical anomalies that can undermine the trustworthiness of the data and the accuracy of statistical inferences, particularly in spatial and temporal analyses. Here we propose a framework for detecting anomalies in sensor data recorded in stream networks, which takes advantage of spatial and temporal autocorrelation to improve detection rates. The proposed framework involves the implementation of effective data imputation to handle missing data, alignment of time-series to address temporal disparities, and the identification of water quality events. We explore the effectiveness of a suite of state-of-the-art statistical methods including posterior predictive distributions, finite mixtures, and Hidden Markov Models (HMM). We showcase the practical implementation of automated anomaly detection in near-real time by employing a Bayesian recursive approach. This demonstration is conducted through a comprehensive simulation study and a practical application to a substantive case study situated in the Herbert River, located in Queensland, Australia, which flows into the Great Barrier Reef. We found that methods such as posterior predictive distributions and HMM produce the best performance in detecting multiple types of anomalies. Utilizing data from multiple sensors deployed relatively near one another enhances the ability to distinguish between water quality events and technical anomalies, thereby significantly improving the accuracy of anomaly detection. Thus, uncertainty and biases in water quality reporting, interpretation, and modeling are reduced, and the effectiveness of subsequent management actions improved.
期刊介绍:
Water Resources Research (WRR) is an interdisciplinary journal that focuses on hydrology and water resources. It publishes original research in the natural and social sciences of water. It emphasizes the role of water in the Earth system, including physical, chemical, biological, and ecological processes in water resources research and management, including social, policy, and public health implications. It encompasses observational, experimental, theoretical, analytical, numerical, and data-driven approaches that advance the science of water and its management. Submissions are evaluated for their novelty, accuracy, significance, and broader implications of the findings.