{"title":"用纳米硅酸盐蒸发诱导烧结 Ga60.5In25Sn13Zn1.5 合金制备的电磁屏蔽纱线的电磁波反射性能优化","authors":"Yichao Wang, Jingli Tang, Mengjuan He, Liqian Huang, Xueli Wang, Jianyong Yu","doi":"10.1021/acs.langmuir.4c03258","DOIUrl":null,"url":null,"abstract":"Electromagnetic interference (EMI) shielding textiles have received widespread attention, and liquid metal (LM) shows superiority in flexible and deformable electronics. Here, we introduce a novel method using nanosilicates to help sinter LM through capillary evaporation, resulting in strong adhesion to substrates. By adjustment of the amount of nanosilicates, flexible EMI shielding yarns are created using dip-coating and curing processes. The sintered LM tightly adhered to the undulating and uneven surfaces of polyurethane (PU) yarns. The as-fabricated ION/LM@PU (“ION” is abbreviation of “ionogel”) has strong EMI shielding and low EM-wave reflection due to the high electrical conductivity of the LM layer and good impedance matching of P(AAm-<i>co</i>-AA) ionogel. The addition of an ionogel enhances EM-wave absorption and strengthens interfacial polarization, making it an effective green EMI shielding yarn for reducing secondary reflection pollution. ION/LM@PU exhibited high total electromagnetic interference shielding effectiveness (EMI SE<sub>T</sub>) (∼56 dB), low reflected power coefficient (R) (∼0.153), high impedance matching (|<i>Z</i><sub>in</sub>/<i>Z</i><sub>0</sub>| ≈ 0.660), high tensile strength (∼23.75 MPa), and high elastic recovery (∼0.92 at 10th stretch–release cycle). The EMI shielding mechanism of ION/LM@PU ± 60° is composed of reflective loss and absorption loss (including multireflective loss, conduction loss, dipole polarization loss, and interfacial polarization loss).","PeriodicalId":50,"journal":{"name":"Langmuir","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of Electromagnetic-Wave Reflectivity Performance of Electromagnetic Shielding Yarn Prepared by Evaporation-Induced Sintering of Ga60.5In25Sn13Zn1.5 Alloy with Nanosilicates\",\"authors\":\"Yichao Wang, Jingli Tang, Mengjuan He, Liqian Huang, Xueli Wang, Jianyong Yu\",\"doi\":\"10.1021/acs.langmuir.4c03258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electromagnetic interference (EMI) shielding textiles have received widespread attention, and liquid metal (LM) shows superiority in flexible and deformable electronics. Here, we introduce a novel method using nanosilicates to help sinter LM through capillary evaporation, resulting in strong adhesion to substrates. By adjustment of the amount of nanosilicates, flexible EMI shielding yarns are created using dip-coating and curing processes. The sintered LM tightly adhered to the undulating and uneven surfaces of polyurethane (PU) yarns. The as-fabricated ION/LM@PU (“ION” is abbreviation of “ionogel”) has strong EMI shielding and low EM-wave reflection due to the high electrical conductivity of the LM layer and good impedance matching of P(AAm-<i>co</i>-AA) ionogel. The addition of an ionogel enhances EM-wave absorption and strengthens interfacial polarization, making it an effective green EMI shielding yarn for reducing secondary reflection pollution. ION/LM@PU exhibited high total electromagnetic interference shielding effectiveness (EMI SE<sub>T</sub>) (∼56 dB), low reflected power coefficient (R) (∼0.153), high impedance matching (|<i>Z</i><sub>in</sub>/<i>Z</i><sub>0</sub>| ≈ 0.660), high tensile strength (∼23.75 MPa), and high elastic recovery (∼0.92 at 10th stretch–release cycle). The EMI shielding mechanism of ION/LM@PU ± 60° is composed of reflective loss and absorption loss (including multireflective loss, conduction loss, dipole polarization loss, and interfacial polarization loss).\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.langmuir.4c03258\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c03258","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Optimization of Electromagnetic-Wave Reflectivity Performance of Electromagnetic Shielding Yarn Prepared by Evaporation-Induced Sintering of Ga60.5In25Sn13Zn1.5 Alloy with Nanosilicates
Electromagnetic interference (EMI) shielding textiles have received widespread attention, and liquid metal (LM) shows superiority in flexible and deformable electronics. Here, we introduce a novel method using nanosilicates to help sinter LM through capillary evaporation, resulting in strong adhesion to substrates. By adjustment of the amount of nanosilicates, flexible EMI shielding yarns are created using dip-coating and curing processes. The sintered LM tightly adhered to the undulating and uneven surfaces of polyurethane (PU) yarns. The as-fabricated ION/LM@PU (“ION” is abbreviation of “ionogel”) has strong EMI shielding and low EM-wave reflection due to the high electrical conductivity of the LM layer and good impedance matching of P(AAm-co-AA) ionogel. The addition of an ionogel enhances EM-wave absorption and strengthens interfacial polarization, making it an effective green EMI shielding yarn for reducing secondary reflection pollution. ION/LM@PU exhibited high total electromagnetic interference shielding effectiveness (EMI SET) (∼56 dB), low reflected power coefficient (R) (∼0.153), high impedance matching (|Zin/Z0| ≈ 0.660), high tensile strength (∼23.75 MPa), and high elastic recovery (∼0.92 at 10th stretch–release cycle). The EMI shielding mechanism of ION/LM@PU ± 60° is composed of reflective loss and absorption loss (including multireflective loss, conduction loss, dipole polarization loss, and interfacial polarization loss).
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).