Sabin Neupane, Deng-Bing Li, Abasi Abudulimu, Manoj Kumar Jamarkattel, Chun-Sheng Jiang, Yeming Xian, Xiaomeng Duan, Adam B. Phillips, Michael J. Heben, Randall J. Ellingson, Feng Yan, Dingyuan Lu, Dan Mao, Nicholas Miller, James Becker, William Huber, Gang Xiong, Yanfa Yan
{"title":"原位掺铋实现开路电压超过 900 mV 的高效碲化镉薄膜太阳能电池","authors":"Sabin Neupane, Deng-Bing Li, Abasi Abudulimu, Manoj Kumar Jamarkattel, Chun-Sheng Jiang, Yeming Xian, Xiaomeng Duan, Adam B. Phillips, Michael J. Heben, Randall J. Ellingson, Feng Yan, Dingyuan Lu, Dan Mao, Nicholas Miller, James Becker, William Huber, Gang Xiong, Yanfa Yan","doi":"10.1016/j.joule.2024.09.013","DOIUrl":null,"url":null,"abstract":"The focus of CdSeTe thin-film solar cell doping has transitioned from copper (Cu) doping to group V doping. <em>In situ</em> group V doping has resulted in a new record power conversion efficiency (PCE) of 23.1%, with open-circuit voltages (V<sub>OC</sub>s) exceeding the 900 mV mark. Here, we report that <em>ex situ</em> bismuth (Bi)-doped CdSeTe thin-film solar cells show V<sub>OC</sub>s exceeding 900 mV and a champion PCE of 20.6%. Characterizations revealed that the Se-rich CdSeTe region near the front junction promotes Bi ions to occupy the anion sites and dope this region weakly p-type. Bi ions in the CdTe-dominating back surface region occupy the cation sites and are oxidized. This <em>ex situ</em> Bi doping with BiF<sub>3</sub> as a dopant precursor offers several advantages, including simplicity, high tolerance to the processing environment, and no requirement of additional Cd vapor or special activation processes, making it highly adaptable for researchers to explore efficient Bi-doped CdSeTe thin-film solar cells.","PeriodicalId":343,"journal":{"name":"Joule","volume":null,"pages":null},"PeriodicalIF":38.6000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ex situ bismuth doping for efficient CdSeTe thin-film solar cells with open-circuit voltages exceeding 900 mV\",\"authors\":\"Sabin Neupane, Deng-Bing Li, Abasi Abudulimu, Manoj Kumar Jamarkattel, Chun-Sheng Jiang, Yeming Xian, Xiaomeng Duan, Adam B. Phillips, Michael J. Heben, Randall J. Ellingson, Feng Yan, Dingyuan Lu, Dan Mao, Nicholas Miller, James Becker, William Huber, Gang Xiong, Yanfa Yan\",\"doi\":\"10.1016/j.joule.2024.09.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The focus of CdSeTe thin-film solar cell doping has transitioned from copper (Cu) doping to group V doping. <em>In situ</em> group V doping has resulted in a new record power conversion efficiency (PCE) of 23.1%, with open-circuit voltages (V<sub>OC</sub>s) exceeding the 900 mV mark. Here, we report that <em>ex situ</em> bismuth (Bi)-doped CdSeTe thin-film solar cells show V<sub>OC</sub>s exceeding 900 mV and a champion PCE of 20.6%. Characterizations revealed that the Se-rich CdSeTe region near the front junction promotes Bi ions to occupy the anion sites and dope this region weakly p-type. Bi ions in the CdTe-dominating back surface region occupy the cation sites and are oxidized. This <em>ex situ</em> Bi doping with BiF<sub>3</sub> as a dopant precursor offers several advantages, including simplicity, high tolerance to the processing environment, and no requirement of additional Cd vapor or special activation processes, making it highly adaptable for researchers to explore efficient Bi-doped CdSeTe thin-film solar cells.\",\"PeriodicalId\":343,\"journal\":{\"name\":\"Joule\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":38.6000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Joule\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.joule.2024.09.013\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.joule.2024.09.013","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
碲化镉薄膜太阳能电池掺杂的重点已从铜(Cu)掺杂过渡到 V 族掺杂。原位 V 族掺杂使功率转换效率 (PCE) 达到 23.1%,创下新纪录,开路电压 (VOC) 超过 900 mV。在这里,我们报告了原位掺铋 (Bi) 的碲化镉薄膜太阳能电池显示出超过 900 mV 的 VOC 和 20.6% 的冠军 PCE。表征结果表明,前结点附近富含硒的 CdSeTe 区域促进 Bi 离子占据阴离子位点,并使该区域成为弱 p 型。碲化镉为主的背面区域中的铋离子占据阳离子位点并被氧化。这种以 BiF3 为掺杂剂前驱体的原位 Bi 掺杂具有多种优势,包括操作简单、对加工环境的耐受性高、无需额外的镉蒸气或特殊的活化过程,因此非常适合研究人员探索高效的 Bi 掺杂碲化镉薄膜太阳能电池。
Ex situ bismuth doping for efficient CdSeTe thin-film solar cells with open-circuit voltages exceeding 900 mV
The focus of CdSeTe thin-film solar cell doping has transitioned from copper (Cu) doping to group V doping. In situ group V doping has resulted in a new record power conversion efficiency (PCE) of 23.1%, with open-circuit voltages (VOCs) exceeding the 900 mV mark. Here, we report that ex situ bismuth (Bi)-doped CdSeTe thin-film solar cells show VOCs exceeding 900 mV and a champion PCE of 20.6%. Characterizations revealed that the Se-rich CdSeTe region near the front junction promotes Bi ions to occupy the anion sites and dope this region weakly p-type. Bi ions in the CdTe-dominating back surface region occupy the cation sites and are oxidized. This ex situ Bi doping with BiF3 as a dopant precursor offers several advantages, including simplicity, high tolerance to the processing environment, and no requirement of additional Cd vapor or special activation processes, making it highly adaptable for researchers to explore efficient Bi-doped CdSeTe thin-film solar cells.
期刊介绍:
Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.