砷化镉超薄薄膜中的零场维格纳固体证据

IF 11.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Physical Review X Pub Date : 2024-11-07 DOI:10.1103/physrevx.14.041037
Simon Munyan, Sina Ahadi, Binghao Guo, Arman Rashidi, Susanne Stemmer
{"title":"砷化镉超薄薄膜中的零场维格纳固体证据","authors":"Simon Munyan, Sina Ahadi, Binghao Guo, Arman Rashidi, Susanne Stemmer","doi":"10.1103/physrevx.14.041037","DOIUrl":null,"url":null,"abstract":"The quantum Wigner crystal is a many-body state where Coulombic repulsion quenches the kinetic energy of electrons, causing them to crystallize into a lattice. Experimental realization of a quantum Wigner crystal at zero magnetic field has been a long-sought goal. Here, we report on the experimental evidence of a Wigner solid in ultra-thin films of cadmium arsenide (<mjx-container ctxtmenu_counter=\"12\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(7 (2 0 1) 6 (5 3 4))\"><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"2,5\" data-semantic-content=\"6\" data-semantic- data-semantic-owns=\"2 6 5\" data-semantic-role=\"implicit\" data-semantic-speech=\"upper C d 3 upper A s 2\" data-semantic-type=\"infixop\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-parent=\"7\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\"><mjx-mrow><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">C</mjx-c><mjx-c style=\"padding-top: 0.706em;\">d</mjx-c></mjx-mi></mjx-mrow><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>3</mjx-c></mjx-mn></mjx-script></mjx-msub><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"7\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-msub data-semantic-children=\"3,4\" data-semantic- data-semantic-owns=\"3 4\" data-semantic-parent=\"7\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\"><mjx-mrow><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.662em;\">A</mjx-c><mjx-c style=\"padding-top: 0.662em;\">s</mjx-c></mjx-mi></mjx-mrow><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-mrow></mjx-math></mjx-container>) at zero magnetic field. We show that a finite bias depins the domains and produces an unusually sharp-threshold current-voltage behavior. Hysteresis and voltage fluctuations point to domain motion across the pinning potential and disappear at finite temperature as thermal fluctuations overcome the potential. The application of a small magnetic field destroys the Wigner solid, pointing to an unconventional origin. We use Landau-level spectroscopy to show that the formation of the Wigner solid is closely connected to a topological transition as the film thickness is reduced.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"95 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evidence of Zero-Field Wigner Solids in Ultrathin Films of Cadmium Arsenide\",\"authors\":\"Simon Munyan, Sina Ahadi, Binghao Guo, Arman Rashidi, Susanne Stemmer\",\"doi\":\"10.1103/physrevx.14.041037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The quantum Wigner crystal is a many-body state where Coulombic repulsion quenches the kinetic energy of electrons, causing them to crystallize into a lattice. Experimental realization of a quantum Wigner crystal at zero magnetic field has been a long-sought goal. Here, we report on the experimental evidence of a Wigner solid in ultra-thin films of cadmium arsenide (<mjx-container ctxtmenu_counter=\\\"12\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"(7 (2 0 1) 6 (5 3 4))\\\"><mjx-mrow data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-children=\\\"2,5\\\" data-semantic-content=\\\"6\\\" data-semantic- data-semantic-owns=\\\"2 6 5\\\" data-semantic-role=\\\"implicit\\\" data-semantic-speech=\\\"upper C d 3 upper A s 2\\\" data-semantic-type=\\\"infixop\\\"><mjx-msub data-semantic-children=\\\"0,1\\\" data-semantic- data-semantic-owns=\\\"0 1\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"subscript\\\"><mjx-mrow><mjx-mi data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\"><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.706em;\\\">C</mjx-c><mjx-c style=\\\"padding-top: 0.706em;\\\">d</mjx-c></mjx-mi></mjx-mrow><mjx-script style=\\\"vertical-align: -0.15em;\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c>3</mjx-c></mjx-mn></mjx-script></mjx-msub><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"infixop,⁢\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-msub data-semantic-children=\\\"3,4\\\" data-semantic- data-semantic-owns=\\\"3 4\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"subscript\\\"><mjx-mrow><mjx-mi data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\"><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.662em;\\\">A</mjx-c><mjx-c style=\\\"padding-top: 0.662em;\\\">s</mjx-c></mjx-mi></mjx-mrow><mjx-script style=\\\"vertical-align: -0.15em;\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-mrow></mjx-math></mjx-container>) at zero magnetic field. We show that a finite bias depins the domains and produces an unusually sharp-threshold current-voltage behavior. Hysteresis and voltage fluctuations point to domain motion across the pinning potential and disappear at finite temperature as thermal fluctuations overcome the potential. The application of a small magnetic field destroys the Wigner solid, pointing to an unconventional origin. We use Landau-level spectroscopy to show that the formation of the Wigner solid is closely connected to a topological transition as the film thickness is reduced.\",\"PeriodicalId\":20161,\"journal\":{\"name\":\"Physical Review X\",\"volume\":\"95 1\",\"pages\":\"\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review X\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevx.14.041037\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.14.041037","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

量子维格纳晶体是一种多体状态,库仑斥力淬灭了电子的动能,使电子结晶成晶格。在实验中实现零磁场下的量子维格纳晶体一直是人们孜孜以求的目标。在这里,我们报告了在零磁场下砷化镉(Cd3As2)超薄薄膜中出现维格纳固体的实验证据。我们的研究表明,有限偏压会使畴沉积,并产生异常尖锐的阈值电流-电压行为。磁滞和电压波动表明畴运动跨越了针销电势,并随着热波动克服电势而在有限温度下消失。施加一个小磁场就会破坏维格纳固体,从而指向一个非传统的起源。我们利用朗道级光谱学证明,随着薄膜厚度的减小,维格纳固体的形成与拓扑转变密切相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evidence of Zero-Field Wigner Solids in Ultrathin Films of Cadmium Arsenide
The quantum Wigner crystal is a many-body state where Coulombic repulsion quenches the kinetic energy of electrons, causing them to crystallize into a lattice. Experimental realization of a quantum Wigner crystal at zero magnetic field has been a long-sought goal. Here, we report on the experimental evidence of a Wigner solid in ultra-thin films of cadmium arsenide (Cd3As2) at zero magnetic field. We show that a finite bias depins the domains and produces an unusually sharp-threshold current-voltage behavior. Hysteresis and voltage fluctuations point to domain motion across the pinning potential and disappear at finite temperature as thermal fluctuations overcome the potential. The application of a small magnetic field destroys the Wigner solid, pointing to an unconventional origin. We use Landau-level spectroscopy to show that the formation of the Wigner solid is closely connected to a topological transition as the film thickness is reduced.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review X
Physical Review X PHYSICS, MULTIDISCIPLINARY-
CiteScore
24.60
自引率
1.60%
发文量
197
审稿时长
3 months
期刊介绍: Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.
期刊最新文献
Information Arbitrage in Bipartite Heat Engines Revealing the Microscopic Mechanism of Elementary Vortex Pinning in Superconductors Emergent Properties of the Periodic Anderson Model: A High-Resolution, Real-Frequency Study of Heavy-Fermion Quantum Criticality Evidence of Zero-Field Wigner Solids in Ultrathin Films of Cadmium Arsenide Lifted TASEP: A Solvable Paradigm for Speeding up Many-Particle Markov Chains
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1