Enrica Ciotola , Ignacio Sottorff , Konrad Koch , Alessandra Cesaro , Giovanni Esposito
{"title":"评估厌氧消化污泥中的痕量有机化学品及其分配行为:同时进行索氏化学萃取并通过 LC-MS/MS 分析进行定量","authors":"Enrica Ciotola , Ignacio Sottorff , Konrad Koch , Alessandra Cesaro , Giovanni Esposito","doi":"10.1016/j.watres.2024.122780","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing number of trace organic contaminants (TrOCs) detected in anaerobically digested sludge (ADS) is triggering increasing concern on its circular-economy reuse practices. A large scientific effort has been performed to define their concentration limits, partition behaviour, and innovative technologies for their removal, which require the definition of versatile and economically sustainable analytical methodologies. In this study, a Soxhlet extraction method coupled with LC-MS/MS analysis was developed to simultaneously determine 32 TrOCs in ADS, 11 of them being quantified in this matrix for the first time. The targeted TrOCs were selected based on the European Urban Wastewater Treatment Directive, and on their frequency of detection in municipal wastewater and/or sludge and chemical diversity. The use of methanol as solvent allowed good recovery efficiencies from ADS solid phase, with an extraction time of 3.5 h and without the need for subsequent clean-up procedures. The targeted LC-MS/MS method enabled high-sensitivity quantification of TrOCs in the liquid phase. At least 25 out of the 32 target compounds were detected in ADS samples from two wastewater treatment plants in Germany, providing their concentration data and highlighting the influence of TrOCs characteristics and sludge properties on contaminant partition coefficients (K<sub>D</sub>). The experimental outcomes highlight the versatility of the Soxhlet method, which is effective in extracting compounds characterized by diverse properties and structures, and opens new perspectives for the analysis of various substrates. This could support the European Sewage Sludge Directive, expanding its application to soils and cultivated foods and offering insights into TrOCs transfer among different substrates and their influence when used as fertilizer, aiding in the efficient definition of risk assessment methodologies and regulatory concentration limits.</div></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":"268 ","pages":"Article 122780"},"PeriodicalIF":11.4000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of trace organic chemicals in anaerobically digested sludge and their partitioning behaviour: Simultaneous Soxhlet chemical extraction and quantification via LC-MS/MS analysis\",\"authors\":\"Enrica Ciotola , Ignacio Sottorff , Konrad Koch , Alessandra Cesaro , Giovanni Esposito\",\"doi\":\"10.1016/j.watres.2024.122780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The increasing number of trace organic contaminants (TrOCs) detected in anaerobically digested sludge (ADS) is triggering increasing concern on its circular-economy reuse practices. A large scientific effort has been performed to define their concentration limits, partition behaviour, and innovative technologies for their removal, which require the definition of versatile and economically sustainable analytical methodologies. In this study, a Soxhlet extraction method coupled with LC-MS/MS analysis was developed to simultaneously determine 32 TrOCs in ADS, 11 of them being quantified in this matrix for the first time. The targeted TrOCs were selected based on the European Urban Wastewater Treatment Directive, and on their frequency of detection in municipal wastewater and/or sludge and chemical diversity. The use of methanol as solvent allowed good recovery efficiencies from ADS solid phase, with an extraction time of 3.5 h and without the need for subsequent clean-up procedures. The targeted LC-MS/MS method enabled high-sensitivity quantification of TrOCs in the liquid phase. At least 25 out of the 32 target compounds were detected in ADS samples from two wastewater treatment plants in Germany, providing their concentration data and highlighting the influence of TrOCs characteristics and sludge properties on contaminant partition coefficients (K<sub>D</sub>). The experimental outcomes highlight the versatility of the Soxhlet method, which is effective in extracting compounds characterized by diverse properties and structures, and opens new perspectives for the analysis of various substrates. This could support the European Sewage Sludge Directive, expanding its application to soils and cultivated foods and offering insights into TrOCs transfer among different substrates and their influence when used as fertilizer, aiding in the efficient definition of risk assessment methodologies and regulatory concentration limits.</div></div>\",\"PeriodicalId\":443,\"journal\":{\"name\":\"Water Research\",\"volume\":\"268 \",\"pages\":\"Article 122780\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2024-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0043135424016798\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043135424016798","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Assessment of trace organic chemicals in anaerobically digested sludge and their partitioning behaviour: Simultaneous Soxhlet chemical extraction and quantification via LC-MS/MS analysis
The increasing number of trace organic contaminants (TrOCs) detected in anaerobically digested sludge (ADS) is triggering increasing concern on its circular-economy reuse practices. A large scientific effort has been performed to define their concentration limits, partition behaviour, and innovative technologies for their removal, which require the definition of versatile and economically sustainable analytical methodologies. In this study, a Soxhlet extraction method coupled with LC-MS/MS analysis was developed to simultaneously determine 32 TrOCs in ADS, 11 of them being quantified in this matrix for the first time. The targeted TrOCs were selected based on the European Urban Wastewater Treatment Directive, and on their frequency of detection in municipal wastewater and/or sludge and chemical diversity. The use of methanol as solvent allowed good recovery efficiencies from ADS solid phase, with an extraction time of 3.5 h and without the need for subsequent clean-up procedures. The targeted LC-MS/MS method enabled high-sensitivity quantification of TrOCs in the liquid phase. At least 25 out of the 32 target compounds were detected in ADS samples from two wastewater treatment plants in Germany, providing their concentration data and highlighting the influence of TrOCs characteristics and sludge properties on contaminant partition coefficients (KD). The experimental outcomes highlight the versatility of the Soxhlet method, which is effective in extracting compounds characterized by diverse properties and structures, and opens new perspectives for the analysis of various substrates. This could support the European Sewage Sludge Directive, expanding its application to soils and cultivated foods and offering insights into TrOCs transfer among different substrates and their influence when used as fertilizer, aiding in the efficient definition of risk assessment methodologies and regulatory concentration limits.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.