基于在线学习的未知物体惯性参数识别,实现基于模型的轮式人形机器人控制

IF 4.6 2区 计算机科学 Q2 ROBOTICS IEEE Robotics and Automation Letters Pub Date : 2024-10-17 DOI:10.1109/LRA.2024.3483039
Donghoon Baek;Bo Peng;Saurabh Gupta;Joao Ramos
{"title":"基于在线学习的未知物体惯性参数识别,实现基于模型的轮式人形机器人控制","authors":"Donghoon Baek;Bo Peng;Saurabh Gupta;Joao Ramos","doi":"10.1109/LRA.2024.3483039","DOIUrl":null,"url":null,"abstract":"Identifying the dynamic properties of manipulated objects is essential for safe and accurate robot control. Most methods rely on low-noise force-torque sensors, long exciting signals, and solving nonlinear optimization problems, making the estimation process slow. In this work, we propose a fast, online learning-based inertial parameter estimation framework that enhances model-based control. We aim to quickly and accurately estimate the parameters of an unknown object using only the robot's proprioception through end-to-end learning, which is applicable for real-time system. To effectively capture features in robot proprioception solely affected by object dynamics and address the challenge of obtaining ground truth inertial parameters in the real world, we developed a high-fidelity simulation that uses more accurate robot dynamics through real-to-sim adaptation. Since our adaptation focuses solely on the robot, task-relevant data (e.g., holding an object) is not required from the real world, simplifying the data collection process. Moreover, we address both parametric and non-parametric modeling errors independently using \n<italic>Robot System Identification</i>\n and \n<italic>Gaussian Processes</i>\n. We validate our estimator to assess how quickly and accurately it can estimate physically feasible parameters of an manipulated object given a specific trajectory obtained from a wheeled humanoid robot. Our estimator achieves faster estimation speeds (around 0.1 seconds) while maintaining accuracy comparable to other methods. Additionally, our estimator further highlight its benefits in improving the performance of model based control by compensating object's dynamics and re initializing new equilibrium point of wheeled humanoid.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"9 12","pages":"11154-11161"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Online Learning-Based Inertial Parameter Identification of Unknown Object for Model-Based Control of Wheeled Humanoids\",\"authors\":\"Donghoon Baek;Bo Peng;Saurabh Gupta;Joao Ramos\",\"doi\":\"10.1109/LRA.2024.3483039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Identifying the dynamic properties of manipulated objects is essential for safe and accurate robot control. Most methods rely on low-noise force-torque sensors, long exciting signals, and solving nonlinear optimization problems, making the estimation process slow. In this work, we propose a fast, online learning-based inertial parameter estimation framework that enhances model-based control. We aim to quickly and accurately estimate the parameters of an unknown object using only the robot's proprioception through end-to-end learning, which is applicable for real-time system. To effectively capture features in robot proprioception solely affected by object dynamics and address the challenge of obtaining ground truth inertial parameters in the real world, we developed a high-fidelity simulation that uses more accurate robot dynamics through real-to-sim adaptation. Since our adaptation focuses solely on the robot, task-relevant data (e.g., holding an object) is not required from the real world, simplifying the data collection process. Moreover, we address both parametric and non-parametric modeling errors independently using \\n<italic>Robot System Identification</i>\\n and \\n<italic>Gaussian Processes</i>\\n. We validate our estimator to assess how quickly and accurately it can estimate physically feasible parameters of an manipulated object given a specific trajectory obtained from a wheeled humanoid robot. Our estimator achieves faster estimation speeds (around 0.1 seconds) while maintaining accuracy comparable to other methods. Additionally, our estimator further highlight its benefits in improving the performance of model based control by compensating object's dynamics and re initializing new equilibrium point of wheeled humanoid.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"9 12\",\"pages\":\"11154-11161\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10720816/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10720816/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

识别被操纵物体的动态特性对于安全、准确地控制机器人至关重要。大多数方法都依赖于低噪声力矩传感器、较长的激励信号以及非线性优化问题的求解,从而导致估计过程缓慢。在这项工作中,我们提出了一种基于在线学习的快速惯性参数估计框架,以增强基于模型的控制。我们的目标是通过端到端学习,仅利用机器人的本体感知快速、准确地估计未知物体的参数,这适用于实时系统。为了有效捕捉仅受物体动力学影响的机器人本体感觉特征,并解决在真实世界中获取地面真实惯性参数的难题,我们开发了一种高保真模拟,通过真实到模拟的适配,使用更精确的机器人动力学。由于我们的适配只关注机器人,因此不需要从真实世界获取与任务相关的数据(例如,握住物体),从而简化了数据收集过程。此外,我们还利用机器人系统识别和高斯过程独立解决了参数和非参数建模误差问题。我们验证了我们的估算器,以评估它在从轮式仿人机器人获取特定轨迹的情况下,如何快速准确地估算出被操纵物体的物理可行参数。我们的估算器实现了更快的估算速度(约 0.1 秒),同时保持了与其他方法相当的精度。此外,我们的估算器通过补偿物体的动态和重新初始化轮式仿人机器人的新平衡点,进一步突出了其在提高基于模型的控制性能方面的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Online Learning-Based Inertial Parameter Identification of Unknown Object for Model-Based Control of Wheeled Humanoids
Identifying the dynamic properties of manipulated objects is essential for safe and accurate robot control. Most methods rely on low-noise force-torque sensors, long exciting signals, and solving nonlinear optimization problems, making the estimation process slow. In this work, we propose a fast, online learning-based inertial parameter estimation framework that enhances model-based control. We aim to quickly and accurately estimate the parameters of an unknown object using only the robot's proprioception through end-to-end learning, which is applicable for real-time system. To effectively capture features in robot proprioception solely affected by object dynamics and address the challenge of obtaining ground truth inertial parameters in the real world, we developed a high-fidelity simulation that uses more accurate robot dynamics through real-to-sim adaptation. Since our adaptation focuses solely on the robot, task-relevant data (e.g., holding an object) is not required from the real world, simplifying the data collection process. Moreover, we address both parametric and non-parametric modeling errors independently using Robot System Identification and Gaussian Processes . We validate our estimator to assess how quickly and accurately it can estimate physically feasible parameters of an manipulated object given a specific trajectory obtained from a wheeled humanoid robot. Our estimator achieves faster estimation speeds (around 0.1 seconds) while maintaining accuracy comparable to other methods. Additionally, our estimator further highlight its benefits in improving the performance of model based control by compensating object's dynamics and re initializing new equilibrium point of wheeled humanoid.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
期刊最新文献
Integrated Grasping Controller Leveraging Optical Proximity Sensors for Simultaneous Contact, Impact Reduction, and Force Control Single-Motor-Driven (4 + 2)-Fingered Robotic Gripper Capable of Expanding the Workable Space in the Extremely Confined Environment CMGFA: A BEV Segmentation Model Based on Cross-Modal Group-Mix Attention Feature Aggregator Visual-Inertial Localization Leveraging Skylight Polarization Pattern Constraints Demonstration Data-Driven Parameter Adjustment for Trajectory Planning in Highly Constrained Environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1